Designing Polymer-based Mucosa Membranes: Biomimicking

Ekta Jagtiani

Polymer and Surface Coating Technology ICT Mumbai.

DOI: https://doi.org/10.36664/bt/2022/v69i1/172497

Keywords: glycopolymer, mucosa, membranes, collagen, cellulose, hydrogel, buccal.


Abstract

Mucoadhesion develops when a polymer adheres to the mucosal membrane through chemical or physical interactions. Adhesive materials are often employed in the manufacture of dosage forms for transmucosal drug administration via oral, nasal, esophageal, buccal and vaginal routes. This review covers some of the most prevalent synthetic methods for improving the mucoadhesive characteristics of polymeric materials. The buccal film and the oral dose form are two of these administration methods. Medication with a high blood perfusion rate can easily pass through the mucosal barrier of the mouth (oral mucosa). Drugs with low bioavailability and short half-life are simpler to administer. Buccal films, as opposed to traditional drug delivery systems, enable for the regulated and prolonged release of topical pharmaceuticals and are favoured over alternative approaches for delivering medications that are at risk of being lost because to the first pass effect, reduced permeability, enzyme degradation along with the gastrointestinal system's changing environment. Superior mucoadhesive qualities are found in hydrophilic polymers that have charged groups and/or non-ionic functional groups that can establish hydrogen bonds with mucosal surfaces. There are multiple ways for assessing the mucoadhesive characteristics of different dosage formulations. This review provides an overview of the properties of mucoadhesive and mucus gel, as well as the most commonly used procedures.

Downloads

Download data is not yet available.

References

(1) Zalewska, A.; Zwierz, K.; Gindzieñski, A. Structure and Biosynthesis of Human Salivary Mucins. Acta Biochim. Pol. 2000, 47, 1067.

(2) Bansil, R.; Turner, B. S. Mucin Structure, Aggregation, Physiological Functions and Biomedical Applications. Curr. Opin. Colloid Interface Sci. 2006, 11 (2–3), 164. https://doi.org/10.1016/j.cocis.2005.11.001.

(3) de Almeida, P. D. V.; Grégio, A. M. T.; Machado, M. Â. N.; de Lima, A. A. S.; Azevedo, L. R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 072.

(4) Stegemann, S.; Gosch, M.; Breitkreutz, J. Swallowing Dysfunction and Dysphagia Is an Unrecognized Challenge for Oral Drug Therapy. Int. J. Pharm. 2012, 430 (1–2), 197. https://doi.org/10.1016/j.ijpharm.2012.04.022.

(5) Duchêne, D.; Ponchel, G. Bioadhesion of Solid Oral Dosage Forms, Why and How? European Journal of Pharmaceutics and Biopharmaceutics 1997, 44 (1), 15–23. https://doi.org/10.1016/S0939-6411(97)00097-0.

(6) Blanco-Fuente, H.; Vila-Dorrío, B.; Anguiano-Igea, S.; Otero-Espinar, F. J.; Blanco-Méndez, J. Tanned Leather: A Good Model for Determining Hydrogels Bioadhesion. International Journal of Pharmaceutics 1996, 138 (1), 103–112. https://doi.org/10.1016/0378-5173(96)04542-5.

(7) Madhav, N. V. S.; Shakya, A. K.; Shakya, P.; Singh, K. Orotransmucosal Drug Delivery Systems: A Review. J. Controlled Release 2009, 140 (1), 2. https://doi.org/10.1016/j.jconrel.2009.07.016.

(8) Khanvilkar, K.; Donovan, M. D.; Flanagan, D. R. Drug Transfer through Mucus. Advanced Drug Delivery Reviews 2001, 48 (2–3), 173–193. https://doi.org/10.1016/S0169-409X(01)00115-6.

Ensign, L. M.; Cone, R.; Hanes, J. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers. Advanced Drug Delivery Reviews 2012, 64 (6), 557–570. https://doi.org/10.1016/J.ADDR.2011.12.009.

Sigurdsson, H. H.; Kirch, J.; Lehr, C. M. Mucus as a Barrier to Lipophilic Drugs. International Journal of Pharmaceutics 2013, 453 (1), 56–64. https://doi.org/10.1016/J.IJPHARM.2013.05.040.

Peppas, N. A.; Huang, Y. Nanoscale Technology of Mucoadhesive Interactions. Advanced Drug Delivery Reviews 2004, 56 (11), 1675–1687. https://doi.org/10.1016/J.ADDR.2004.03.001.

Iqbal, J.; Shahnaz, G.; Dünnhaupt, S.; Müller, C.; Hintzen, F.; Bernkop-Schnürch, A. Preactivated Thiomers as Mucoadhesive Polymers for Drug Delivery. Biomaterials 2012, 33 (5), 1528–1535. https://doi.org/10.1016/J.BIOMATERIALS.2011.10. 021.

Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing - Chemical Communications (RSC Publishing) https://pubs.rsc.org/en/content/articlelanding/2015/C C/C5CC02428E (accessed 2021 -11 -23).

Drury, J. L.; Mooney, D. J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24 (24), 4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5.

Jabbari, E.; Wisniewski, N.; Peppas, N. A. Evidence of Mucoadhesion by Chain Interpenetration at a Poly (Acrylic Acid)/Mucin Interface Using ATR-FTIR Spectroscopy. Journal of Controlled Release 1993, 26 (2), 99–108. https://doi.org/10.1016/0168-3659(93)90109-I.

(16) Smart, J. D. The Basics and Underlying Mechanisms of Mucoadhesion. Advanced Drug Delivery Reviews 2005, 57 (11), 1556–1568. https://doi.org/10.1016/J.ADDR.2005.07.001.

(17) Khafagy, E. S.; Morishita, M. Oral Biodrug Delivery Using Cell-Penetrating Peptide. Advanced Drug Delivery Reviews 2012, 64 (6), 531–539. https://doi.org/10.1016/j.addr.2011.12.014.

(18) Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C. M. The Role of Mucus on Drug Transport and Its Potential to Affect Therapeutic Outcomes. Advanced Drug Delivery Reviews 2018, 124, 82–97. https://doi.org/10.1016/j.addr.2017.10.009.

(19) Becer, C. R. The Glycopolymer Code: Synthesis of Glycopolymers and Multivalent Carbohydrate-Lectin Interactions. Macromolecular Rapid Communications 2012, 33 (9), 742–752. https://doi.org/10.1002/MARC.201200055.

(20) Spain, S. G.; Gibson, M. I.; Cameron, N. R. Recent Advances in the Synthesis of Well-Defined Glycopolymers. Journal of Polymer Science, Part A: Polymer Chemistry 2007, 45 (11), 2059–2072. https://doi.org/10.1002/POLA.22106.

(21) Bansil, R.; Turner, B. S. Mucin Structure, Aggregation, Physiological Functions and Biomedical Applications. Current Opinion in Colloid and Interface Science 2006, 11 (2–3), 164–170. https://doi.org/10.1016/J.COCIS.2005.11.001.

(22) Geng, J.; Mantovani, G.; Tao, L.; Nicolas, J.; Chen, G.; Wallis, R.; Mitchell, D. A.; Johnson, B. R. G.; Evans, S. D.; Haddleton, D. M. Site-Directed Conjugation of “Clicked” Glycopolymers to Form Glycoprotein Mimics: Binding to Mammalian Lectin and Induction of Immunological Function. Journal of the American Chemical Society 2007, 129 (49), 15156–15163. https://doi.org/10.1021/JA072999X.

(23) Godula, K.; Bertozzi, C. R. Density Variant Glycan Microarray for Evaluating Cross-Linking of Mucin-like Glycoconjugates by Lectins. Journal of the American Chemical Society 2012, 134 (38), 15732–15742. https://doi.org/10.1021/JA302193U.

(24) Sahlin, J. J.; Peppas, N. A. Enhanced Hydrogel Adhesion by Polymer Interdiffusion: Use of Linear Poly(Ethylene Glycol) as an Adhesion Promoter. Journal of Biomaterials Science, Polymer Edition 1997, 8 (6), 421–436. https://doi.org/10.1163/156856297X00362.

(25) Zhu, Q.; Chen, Z.; Paul, P. K.; Lu, Y.; Wu, W.; Qi, J. Oral Delivery of Proteins and Peptides: Challenges, Status Quo and Future Perspectives. Acta Pharmaceutica Sinica B 2021, 11 (8), 2416–2448. https://doi.org/10.1016/j.apsb.2021.04.001.

Ensign, L. M.; Cone, R.; Hanes, J. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers. Advanced Drug Delivery Reviews 2012, 64 (6), 557–570. https://doi.org/10.1016/j.addr.2011.12.009.

Henríquez, C.; Bueno, C.; Lissi, E. A.; Encinas, M. v. Thiols as Chain Transfer Agents in Free Radical Polymerization in Aqueous Solution. Polymer 2003, 44 (19), 5559–5561. https://doi.org/10.1016/S0032-3861(03)00581-0.

Sogias, I. A.; Williams, A. C.; Khutoryanskiy, V. v. Why Is Chitosan Mucoadhesive? Biomacromolecules 2008, 9 (7), 1837–1842. https://doi.org/10.1021/BM800276D.

Full-thickness tissue engineered oral mucosa for genitourinary reconstruction: A comparison of different collagen-based biodegradable membranes - PubMed https://pubmed.ncbi.nlm.nih.gov/32914546/ (accessed 2021 -11 -23).

Tait, A.; Proctor, T.; Hamilton, N. J. I.; Birchall, M. A.; Lowdell, M. W. GMP Compliant Isolation of Mucosal Epithelial Cells and Fibroblasts from Biopsy Samples for Clinical Tissue Engineering. Scientific Reports 2021, 11 (1). https://doi.org/10.1038/s41598-021-91939-0.

Khutoryanskaya, O. v.; Potgieter, M.; Khutoryanskiy, V. v. Multilayered Hydrogel Coatings Covalently-Linked to Glass Surfaces Showing a Potential to Mimic Mucosal Tissues. Soft Matter 2010, 6 (3), 551–557. https://doi.org/10.1039/B918007A.

Schwab, R.; Heller, M.; Pfeifer, C.; Unger, R. E.; Walenta, S.; Nezi-Cahn, S.; Al-Nawas, B.; Hasenburg, A.; Brenner, W. Full-Thickness Tissue Engineered Oral Mucosa for Genitourinary Reconstruction: A Comparison of Different Collagen-Based Biodegradable Membranes. Journal of biomedical materials research. Part B, Applied biomaterials 2021, 109 (4), 572–583. https://doi.org/10.1002/JBM.B.34724.

Kongsong, M.; Songsurang, K.; Sangvanich, P.; Siralertmukul, K.; Muangsin, N. Design, Synthesis, Fabrication and in Vitro Evalution of Mucoadhesive 5-Amino-2-Mercaptobenzimidazole Chitosan as Low Water Soluble Drug Carriers. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88 (3), 986–997. https://doi.org/10.1016/j.ejpb.2014.08.016.

(34) Liu, D.; Jiang, X. Y.; Zhou, L. S. Enriched Environment on the Intestinal Mucosal Barrier and Brain–Gut Axis in Rats with Colorectal Cancer. Experimental Biology and Medicine 2018, 243 (15–16), 1185–1198.

(35) Kriegebaum, U.; Mildenberger, M.; Mueller-Richter, U. D. A.; Klammert, U.; Kuebler, A. C.; Reuther, T. Tissue Engineering of Human Oral Mucosa on Different Scaffolds: In Vitro Experiments as a Basis for Clinical Applications. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2012, 114 (SUPPL. 5). https://doi.org/10.1016/j.oooo.2011.10.019.

(36) Khutoryanskaya, O. v.; Potgieter, M.; Khutoryanskiy, V. v. Multilayered Hydrogel Coatings Covalently-Linked to Glass Surfaces Showing a Potential to Mimic Mucosal Tissues. Soft Matter 2010, 6 (3), 551–557. https://doi.org/10.1039/B918007A.

(37) Cook, M. T.; Khutoryanskiy, V. v. Mucoadhesion and Mucosa-Mimetic Materials—A Mini-Review. International Journal of Pharmaceutics2015, 495 (2), 991–998. https://doi.org/10.1016/J.IJPHARM.2015.09.064.

(38) Cook, M. T.; Smith, S. L.; Khutoryanskiy, V. v. Novel Glycopolymer Hydrogels as Mucosa-Mimetic Materials to Reduce Animal Testing. Chem. Commun. 2015, 51 (77), 14447. https://doi.org/10.1039/c5cc02428e.

(39) Hall, D. J.; Khutoryanskaya, O. v.; Khutoryanskiy, V. v. Developing Synthetic Mucosa-Mimetic Hydrogels to Replace Animal Experimentation in Characterisation of Mucoadhesive Drug Delivery Systems. Soft Matter 2011, 7 (20), 9620. https://doi.org/10.1039/c1sm05929g.

(40) Batista, V. L.; da Silva, T. F.; de Jesus, L. C. L.; Coelho-Rocha, N. D.; Barroso, F. A. L.; Tavares, L. M.; Azevedo, V.; Mancha-Agresti, P.; Drumond, M. M. Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis. Frontiers in microbiology 2020, 11, 544490.

(41) Govindasamy, P.; Kesavan, B. R.; Narasimha, J. K. Formulation of Unidirectional Release Buccal Patches of Carbamazepine and Study of Permeation through Porcine Buccal Mucosa. Asian Pacific Journal of Tropical Biomedicine 2013, 3 (12), 995–1002. https://doi.org/10.1016/S2221-1691(13)60192-6.

Shojaei, A. H. Buccal Mucosa as a Route for Systemic Drug Delivery: A Review. J. Pharm. Pharm. Sci. 1998, 1, 15.

Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A. K. Buccal Bioadhesive Drug Delivery—A Promising Option for Orally Less Efficient Drugs. J. Controlled Release 2006, 114 (1), 15. https://doi.org/10.1016/j.jconrel.2006.04.012.

Wang, S.; Zuo, A.; Guo, J. Types and Evaluation of in Vitro Penetration Models for Buccal Mucosal Delivery. Journal of Drug Delivery Science and Technology 2021, 61. https://doi.org/10.1016/j.jddst.2020.102122.

Fabrication of eggshell membrane–based novel buccal mucosa–mimetic surface and mucoadhesion testing of chitosan oligosaccharide films | Journal of Materials Research | Cambridge Core https://www.cambridge.org/core/journals/journal-ofmaterials- research/article/abs/fabrication-of-eggshellmembranebased- novel-buccal-mucosamimetic-surfac e-and-mucoadhesion-testing-of-chitosan-oligosacchar ide-films/4942CA4193AA4692C8B8A08695F35094 (accessed 2021 -11 -23).

Russo, E.; Selmin, F.; Baldassari, S.; Gennari, C. G. M.; Caviglioli, G.; Cilurzo, F.; Minghetti, P.; Parodi, B. A Focus on Mucoadhesive Polymers and Their Application in Buccal Dosage Forms. J. Drug Delivery Sci. Technol. 2015, 1.

Khdair, A.; Hamad, I.; Al-Hussaini, M.; Albayati, D.; Alkhatib, H.; Alkhalidi, B. In Vitro Artificial Membrane-Natural Mucosa Correlation of Carvedilol Buccal Delivery. Journal of Drug Delivery Science and Technology 2013, 23 (6), 603–609. https://doi.org/10.1016/S1773-2247(13)50092-X.

Sander, C.; Nielsen, H. M.; Jacobsen, J. Buccal Delivery of Metformin: TR146 Cell Culture Model Evaluating the Use of Bioadhesive Chitosan Discs for Drug Permeability Enhancement. International Journal of Pharmaceutics 2013, 458 (2), 254–261. https://doi.org/10.1016/j.ijpharm.2013.10.026.

Cubayachi, C.; Couto, R. O. do; de Gaitani, C. M.; Pedrazzi, V.; Freitas, O. de; Lopez, R. F. V. Needle-Free Buccal Anesthesia Using Iontophoresis and Amino Amide Salts Combined in a Mucoadhesive Formulation. Colloids and Surfaces B: Biointerfaces 2015, 136, 1193–1201. https://doi.org/10.1016/j.colsurfb.2015.11.005.

(50) Elkomy, M. H.; el Menshawe, S. F.; Abou-Taleb, H. A.; Elkarmalawy, M. H. Loratadine Bioavailability via Buccal Transferosomal Gel: Formulation, Statistical Optimization, in Vitro/in Vivo Characterization, and Pharmacokinetics in Human Volunteers. Drug Delivery 2017, 24 (1), 781–791. https://doi.org/10.1080/10717544.2017.1321061.

(51) Saisivam, S.; Rahamath Ulla, M.; Shakeel, F. Development of Floating Matrix Tablets of Losartan Potassium: In Vitro and in Vivo Evaluation. Journal of Drug Delivery Science and Technology 2013, 23 (6), 611–617. https://doi.org/10.1016/S1773-2247(13)50093-1.

(52) Langdon, R. J.; Yousefi, P. D.; Relton, C. L.; Suderman, M. J. Epigenetic Modelling of Former, Current and Never Smokers. Clinical Epigenetics 2021. https://doi.org/10.2/JQUERY.MIN.JS.

(53) Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594 984/ (accessed 2021 -11 -23).

(54) Park, S. H.; Yun, B. G.; Won, J. Y.; Yun, W. S.; Shim, J. H.; Lim, M. H.; Kim, D. H.; Baek, S. A.; Alahmari, Y. D.; Jeun, J. H.; Hwang, S. H.; Kim, S. W. New Application of Three-Dimensional Printing Biomaterial in Nasal Reconstruction. Laryngoscope 2017, 127 (5), 1036–1043. https://doi.org/10.1002/LARY.26400.

(55) Brandl, M.; Bauer-Brandl, A. Oromucosal Drug Delivery: Trends in in-Vitro Biopharmaceutical Assessment of New Chemical Entities and Formulations. European Journal of Pharmaceutical Sciences 2019, 128, 112–117. https://doi.org/10.1016/j.ejps.2018.11.031.

(56) Holm, R.; Meng-Lund, E.; Andersen, M. B.; Jespersen, M. L.; Karlsson, J. J.; Garmer, M.; Jørgensen, E. B.; Jacobsen, J. In Vitro, Ex Vivo and in Vivo Examination of Buccal Absorption of Metoprolol with Varying PH in TR146 Cell Culture, Porcine Buccal Mucosa and Göttingen Minipigs. . European Journal of Pharmaceutical Sciences 2013, 49 (2), 117–124. https://doi.org/10.1016/j.ejps.2013.02.024.

(57) Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer - Polycaprolactone in the 21st Century. Progress in Polymer Science (Oxford) 2010, 35 (10), 1217–1256. https://doi.org/10.1016/J.PROGPOLYMSCI.2010.04. 002.

Park, Y. J.; Cha, J. H.; Bang, S. I.; Kim, S. Y. Clinical Application of Three-Dimensionally Printed Biomaterial Polycaprolactone (PCL) in Augmentation Rhinoplasty. Aesthetic Plastic Surgery 2019, 43 (2), 437–446. https://doi.org/10.1007/S00266-018-1280-1.

Ła̧czka, M.; Cholewa-Kowalska, K.; Kulgawczyk, K.; Klisch, M.; Mozgawa, W. Structural Examinations of Gel-Derived Materials of the CaO-P2O5-SiO2 System. Journal of Molecular Structure 1999, 511–512, 223–231. https://doi.org/10.1016/S0022-2860(99)00163-5.

Dziadek, M.; Zagrajczuk, B.; Menaszek, E.; Dziadek, K.; Cholewa-Kowalska, K. Poly(ε-Caprolactone)-Based Membranes with Tunable Physicochemical, Bioactive and Osteoinductive Properties. Journal of Materials Science 2017, 52 (22), 12960–12980. https://doi.org/10.1007/S10853-017-1424-8.

Dziadek, M.; Zagrajczuk, B.; Menaszek, E.; Wegrzynowicz, A.; Pawlik, J.; Cholewa-Kowalska, K. Gel-Derived SiO2-CaO-P2O5 Bioactive Glasses and Glass-Ceramics Modified by SrO Addition. Ceramics International 2016, 42 (5), 5842–5857. https://doi.org/10.1016/J.CERAMINT.2015.12.128.

Domalik-Pyzik, P.; Morawska-Chochół, A.; Chłopek, J.; Rajzer, I.; Wrona, A.; Menaszek, E.; Ambroziak, M. Polylactide/Polycaprolactone Asymmetric Membranes for Guided Bone Regeneration. E-Polymers 2016, 16 (5), 351–358. https://doi.org/10.1515/EPOLY-2016-0138.

Stoor, P.; Grénman, R. Bioactive Glass and Turbinate Flaps in the Repair of Nasal Septal Perforations. Annals of Otology, Rhinology and Laryngology 2004, 113 (8), 655–661. https://doi.org/10.1177/000348940411300811.

Rajzer, I.; Dziadek, M.; Kurowska, A.; Cholewa-Kowalska, K.; Ziąbka, M.; Menaszek, E.; Douglas, T. E. L. Electrospun Polycaprolactone Membranes with Zn-Doped Bioglass for Nasal Tissues Treatment. Journal of Materials Science. Materials in Medicine 2019, 30 (7). https://doi.org/10.1007/S10856-019-6280-4.

Thoma, L. M.; Boles, B. R.; Kuroda, K. Cationic Methacrylate Polymers as Topical Antimicrobial Agents against Staphylococcus Aureus Nasal Colonization. Biomacromolecules 2014, 15 (8), 2933–2943. https://doi.org/10.1021/BM500557D.

(66) Rajzer, I.; Kurowska, A.; Jabłoński, A.; Jatteau, S.; Śliwka, M.; Ziąbka, M.; Menaszek, E. Layered Gelatin/PLLA Scaffolds Fabricated by Electrospinning and 3D Printing- for Nasal Cartilages and Subchondral Bone Reconstruction. Materials and Design 2018, 155, 297–306. https://doi.org/10.1016/J.MATDES.2018.06.012.

Most read articles by the same author(s)