Enhancing Bioavailability of Probiotics using Microencapsulation

Susmit Mhatre

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology

Nitisha Gurav

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology

DOI: https://doi.org/10.36664/bt/2020/v67i1/151190

Keywords: Microencapsulation, Encapsulating Polymers, Probiotics, Biopolymers, Bioavailability.


Abstract

Microencapsulation is a process of coating tiny solid particles or droplets of liquid or gaseous material with a continuous film of polymeric material. By microencapsulation, the core material is prevented from coming in to direct contact with the surrounding atmosphere. This process offers advantages like sustained release, taste masking, increased stability and smaller particle size. Its applications are commonly found in nutraceutics, cosmetics, perfumery, textiles, paint industry and especially in pharmaceutical and food industries. Biologically active species need to be protected from enzymes present in the body as degradation prior to reaching their targeted site can lead to decreased bioavailability. One of the most trending research areas in this regard is microencapsulation of probiotics. Probiotics are microorganisms found in the digestive system and are known to provide immunity and health benefits. However, when consumed orally, they are reported to have poor viability against the gastric pH, with almost 65% of strains of probiotics having low or moderate tolerance. This emphasizes on the need to develop effective delivery systems of probiotics into the gastrointestinal tract by by-passing the highly acidic gastric conditions, which is the major degradation site of these bacteria. Different microencapsulation techniques, like spray drying, spray congealing, extrusion method, complex coacervation and materials like chitosan, carrageenan, alginate, starch have been explored for the effective delivery of probiotics. Synthetic polymers like ethyl cellulose, hydroxypropyl cellulose, acrylates and polyvinyl acetate phthalate are also promising coating agents in microencapsulation. More techniques and material are under study to develop effective systems for delivery of probiotics. This review presents the recent advances in microencapsulation process and the coating materials being studied for increased survival and targeted delivery of probiotics.

Downloads

Download data is not yet available.

Author Biographies

Susmit Mhatre, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology

Department of Pharmaceutical Sciences and Technology

Nitisha Gurav, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology

Department of Pharmaceutical Sciences and Technology


References

Food and Agriculture Organization of the United Nations/World Health Organization, 2001.

Probiotics Market Trends, Size, Analysis | COVID-19 Impact on Probiotics Market | Business Research by MarketsandMarkets, (n.d.). https://www.marketsandmarkets.com/Market-Reports/probiotic-market-advanced-technologies-and-global-market-69.html (accessed November 21, 2020).

S. Prakash, C. Tomaro-Duchesneau, S. Saha, A. Cantor, J. Biomed. Biotechnol. 2011, 1.

V. M. Sheehan, P. Ross, G. F. Fitzgerald, Innov. Food Sci. Emerg. Technol. 2007, 8, 279.

A. Muzzafar, V. Sharma, J. Food Meas. Charact. 2018, 12, 2193.

R. Nagpal, A. Kumar, M. Kumar, P. V. Behare, S. Jain, H. Yadav, FEMS Microbiol. Lett. 2012, 334, 1.

R. E. Ley, F. Backhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, J. I. Gordon, P. Natl. Acad. Sci. USA. 2005, 102, 11070.

K. M. K. Kebary, Food Res. Intl. 1996, 29, 431.

L. C. Corrêa-Filho , M. Moldão-Martins, V. D. Alves, Appl. Sci. 2019, 9, 571.

A. M. Oancea, M. Hasan, A. M. Vasilea, V. Barbu, E. Enachi, G. Bahrim, G. Râpeanu, S. Silvi, N. Stănciuc, LWT. 2018, 95, 129.

J. M. García, D. Giuffrida, P. Dugo, L. Mondello, C. Osorio, Powder Technol. 2018, 339, 702.

P. H. Campelo, E. A. Sanches, R.V.d.B. Fernandes, D. A. Botrel, S. V. Borges, Food Res. Int. 2018, 105, 936.

C. Dima, L. A. Pătrascu, Cantaragiu, P. Alexe, S. Dima, Food Chem. 2016, 195, 39.

K. Sultana, G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, K. Kailasapathy, Int. J. Food Microbiol. 2000, 62, 47.

G. L. Nunes, M. d. A. Etchepare, A. J. Cichoski, L. Q. Zepka, E. J. Lopes, J. S. Barin, É. M. d. M. Flores, C. d. B. da Silva, C. R. de Menezes, LWT. 2018, 89, 128.

I. M. Martins, M. F. Barreiro, M. Coelho, A. E. Rodrigues, Chem. Eng. J. 2014, 245, 191.

Y. Yeo, N. Baek, K. Park, Biotechnol. Bioprocess Eng. 2001, 6, 213.

B. Mohanty, H. B. Bohidar, Biomacromolecules. 2003, 4, 1080.

G . Weiss, A. Knoch, A. Laicher, F. Stanislaus, R. Daniels, Int. J. Pharm. 1995, 124, 87.

H. G. B. de Jong, Complex colloid systems (Chapter X). In Colloid Science; Elsevier: New York, 1949.

Y. Yeo, Encyclopedia of Pharmaceutical Technology. 2005.

Groboillot, A., Boadi, D.K., Poncelet, D., R. J. Neufeld, Crit. Rev. Biotechnol. 1994, 14,75.

B. Cabuk, S. T. Harsa, J. Microencapsul. 2015, 32, 300.

L. F. Călinoiu, B. E. Stefănescu, I. D. Pop, L. Muntean, D. C. Vodnar, Chitosan Coating Applications in Probiotic Microencapsulation. Coatings. 2019, 9, 194.

M. d. A. Etchepare, G. C. Raddatz, de E. M. M. Flores, L. Q. Zepka, E. Jacob-Lopes, J. S. Barin, C. R. F. Grosso, C. R. d. Menezes, LWT Food Sci. Technol. 2016, 65, 511.

P. Singh, B. Medronho, L. Alves, G. J. d. Silva, M. G. Miguel, B. Lindman, Carbohydr. Polym. 2017, 175, 87.

S. A. Valencia-Chamorro, L. Palou, M. A. d. Río, M. B. Pérez-Gago, Crit. Rev. Food Sci. Nutr. 2011, 51, 872.

M. A. Cerqueira, A. I. Bourbon, A. C. Pinheiro, J. T. Martins, B. W. S. Souza, J. A. Teixeira, A. A. Vicente, Trends Food Sci. Technol. 2011, 22, 662.

D. Z. Šuput, V. L. Lazic´, S. Z. Popovic´, N. M. Hromiš, Food Feed Res. 2015, 42, 11.

A. K. Anal, H. Singh, Trends Food Sci. Technol. 2007, 18, 240.

P. E. Ramos, M. A. Cerqueira, J. A. Teixeira, A. A. Vicente, Crit. Rev. Food Sci. Nutr. 2018, 58, 1864.

S. M. Koo, Y. H. Cho, C. S. Huh, Y. J. Baek, J. Park, J. Microbiol. Biotechnol. 2001, 11, 376.

D. C. Vodnar, C. Socaciu, LWT-Food Sci. Technol. 2014, 57, 406.

A. Bepeyeva, J. M. S. de Barros, H. Albadran, A. K. Kakimov, Z. K. Kakimova, D. Charalampopoulos, V. V. Khutoryanskiy, J. Food Sci. 2017, 82, 2954.

N. Varankovich, M. F. Martinez, M. T. Nickerson, D. R. Korber, Food Sci. Biotechnol. 2017, 26, 189.

A.L. Molan, J. Flanagan, W. Wei, P. J. Moughan, Food Chem. 2009, 114, 829.

Q. Zou, J. Zhao, X. Liu, F. Tian, H. Zhang, H. Zhang, W. Chen, Int. J. Food Sci. Technol. 2011, 46, 1672.

X. Y. Li, X. G. Chen, Z. W. Sun, H. J. Park, D. S. Cha, Carbohydr. Polym. 2011, 83, 1479.

I.M. Fareez, S.M. Lim, F.T. Lim, R.K. Mishra, K. Ramasamy, J. Food Process Eng. 2017, 40, e12458.

L. T. Hansen, P. Allan-Wojtas, Y. L. Jin, A. Paulson, Food Microbiol. 2002, 19, 35.

K. Sultana, G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, K. Kailasapathy, Int. J. Food Microbiol. 2000, 62, 47.

W. Sun, M. W. Griffiths, Int. J. Food Microbiol. 2000, 61, 17.

N. T.Annan, A. D. Borza, L. T. Hansen, Food Res. Int. 2008, 41, 184.

W. Krasaekoopt, B. Bhandari, H. Deeth, Int. Dairy J. 2004, 14, 737.

Y. D. Livney, Curr. Opin. Colloid Interface Sci. 2010, 15,73.

R. Vidhyalakshmi, R. Bhakyaraj, R. S. Subhasree, Adv. Biol. Res. 2009, 3, 96.

D. Guerin, J. C. Vuillemard, M. Subirade, J. Food Prot. 2003, 66, 2076.

G. K. Gbassi, T. Vandamme, S. Ennahar, E. Marchioni, Int. J. Food Microbiol. 2009, 129, 103.

R. Rajam, C. Anandharamakrishnan, LWT - Food Sci. Technol. 2015, 60, 773.

Y. Hamano, T. Arai, M. Ashiuchi, K. Kino, Nat. Prod. Rep. 2013, 30, 1087.

J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi, B. J. Lee, Int. J. Pharm. 2000, 210, 51.

C. Iyer, K. Kailasapathy, J. Food Sci. 2005, 70, M018.

W. K. Ding, N. P. Shah, J. Food Sci. 2009, 74, M100.

P. E. Ramos, M. A. Cerqueira, J. A. Teixeira, A. A. Vicente, Crit. Rev. Food Sci. Nutr. 2018, 58, 1864.

K. Kailasapathy, Food Sci. Technol. 2006, 39, 1221.

S. Mandal, A. K. Puniya, K. Singh, Int. Dairy J. 2006, 16, 1190.

M. K. Tripathi, S. K. Giri, J. Funct. Foods. 2014, 9, 225.

G. Broeckx, D. Vandenheuvel, I. J. J. Claes, S. Lebeer, F. Kiekens, Int. J. Pharm. 2016, 505, 303.

G. Mitropoulou, V. Nedovic, A. Goyal, Y. Kourkoutas, J. Nutr. Metab. 2013, 1.

A. A. Reid, C. P. Champagne, N. Gardner, P. Fustier, J. C. Vuillemard, J. Food. Sci. 2007, 72, M031.

S. Khem, V. Bansal, D. M. Small, B. K. May, Food Hydrocoll. 2016, 54, 162.

D. Eratte, S. McKnight, T. R. Gengenbach, K. Dowling, C. J. Barrow, B. P. Adhikari, J. Funct. Foods. 2015, 19, 882.

J. Barbosa, S. Borges, M. Amorim, M. J. Pereira, A. Oliveira, J. Funct. Foods. 2015, 17, 340.

S. Arslan, M. Erbas, I. Tontul, A. Topuz, LWT Food Sci. Technol. 2015, 63, 685.

Y. Zhang, J. Lin, Q. Zhong, Food Res. Int. 2015, 71, 9.

D. Dimitrellou, P. Kandylis, T. Petrović, S. Dimitrijević-Branković, S. Lević, V. Nedović, Y. Kourkoutas, LWT Food Sci.Technol. 2016, 71, 169.

Y. Zhang, J. Lin, Q. Zhong, Food Hydrocoll. 2016, 52, 804.

S. K. Panda, P. H. Shetty (eds.), Innovations in Technologies for Fermented Food and Beverage Industries, Food Microbiology and Food Safety. 2018.

K. Pokusaeva, G. F. Fitzgerald, D. van Sinderen, Gen. Nutr. 2011, 6, 285.

A. Cencic, W. Chingwaru, Forum Nutr. 2010, 2, 611.

M. M. Zhang, J. Q. Cheng, Y. R. Lu, Z. H. Yi, P. Yang, X. T. Wu, World J. Gastroenterol. 2010, 16, 3970.

M. Chávarri, I. Marañón, R. Ares, F. C. Ibáñez, F. Marzo, M. del Carmen Villarán, Int. J. Food Microbiol. 2010, 142, 185.

S. Jantarathin, C. Borompichaichartkul, R. Sanguandeekul, Mater. Today Proc. 2017, 4, 6166.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.