Nanoscience in Multiple Sclerosis

Nitisha Gurav

Department of Pharmaceutical Sciences and Chemistry, Institute of Chemical Technology, Matunga, Mumbai - 400019

Susmit Mhatre

Department of Pharmaceutical Sciences and Chemistry, Institute of Chemical Technology, Matunga, Mumbai - 400019

DOI: https://doi.org/10.36664/bt/2019/v66i1/148997

Keywords: No Keywords.


Abstract

Multiple Sclerosis (MS) - the most common autoimmune disease of the central nervous system – is traditionally diagnosed by methods mainly using magnetic resonance techniques to detect the lesions. Use of nanoparticles as the contrast agents can help in better diagnosis of the damaged cells. Iron nanoparticles are used in various advanced techniques like superparamagnetic iron oxide nanoparticles (SPIONs) and ultra-small SPIONs (USPIONs). The major challenge in treatment of MS is the delivery of the drug into the brain, crossing the blood brain barrier (BBB). Nanoparticles like liposomes, nanoshells, dendrimers, nanogels, micelles have potential applications in the same. Presently, no significant treatment is devoid of side effects like fever, headache and fatigue, Use of nanoscience in MS in drug delivery and treatment can help solve the prevailing inadequacies. Administered quantum dots conjugated with self-antigens act on lymph nodes and spleen. These assemblies produce regulatory T-cells which prevent degeneration of myelin sheath. New studies study modifications to produce inflammation-resistant myelin by inducing response in lymph nodes during T-cell priming. This review aims to briefly describe the application of nanotechnology in diagnosis, drug delivery and treatment of MS.

Downloads

Download data is not yet available.

References

B. Bielekova, B. Goodwin, N. Richert, I. Cortese, T.Kondo, G. Afshar et al., Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand, Nat Med. 6(2000), 1167-75. https://doi.org/10.1038/80516

E.M. Chastain, D.S. Duncan, J.M. Rodgers, S.D. Miller, The role of antigen presenting cells in multiple sclerosis, Biochim Biophys Acta, 1821 (2011), 265-274. https://doi.org/10.1016/j.bbadis.2010.07.008

McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., and Lublin, F. D., 2001. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 50, 121-127. https://doi.org/10.1002/ana.1032

Polman, C. H., Reingold, S. C., Edan, G., Filippi, M., Hartung, H. P., and Kappos, L., 2005. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann. Neurol. 58, 840-846. https://doi.org/10.1002/ana.20703

M. Mahmoudi, V. Serpooshan, S. Laurent, Engineered nanoparticles for biomolecular imaging, Nanoscale. 3 (8), 3007-3026.

A.V. Singh, R. Patil, D.K. Thombre, W.N. Gade, Micronanopatterning as tool to study the role of physicochemical properties on cell-surface interactions, J Biomed Matter Res A. 10(2013) 3019-3032. doi: 10.1002/jbm.a.34586

Keiper MD, Grossman RI, Hirsch JA, et al., 1998. MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5T and 4T. AJNR Am J Neuroradiol. 19:1489-93.

Wolansky LJ, Bardini JA, Cook SD, et al.,1994.Triple-dose versus single-dose gadoteridol in multiple sclerosis patients, J Neuroimaging. 4:141-45.

Sardanelli F, Iozzelli A, Losacco C, et al., 2003. Three subsequent single doses of gadolinium chelate for brain MR imaging in multiple sclerosis. AJNR Am J Neuroradiol. 24:658-62.

K. Tucker, K.R. Robertson, W. Lin, J.K. Smith, H. An, Y. Chen et al., Neuroimaging in human immunodeficiency virus infection, J Neuroimmunol, 157 (2004), 153-62. doi: 10.1016/j.jneuroim.2004.08.036

C. Bocti, Topographical patterns of lobar atrophy in frontotemporal dementia and Alzheimer’s disease, Dement Geriatr Cogn Disord, 21 (2006), 364-72. doi: 10.1159/000091838

D.H. Silverman, A. Alavi, PET imaging in the assessment of normal and impaired cognitive function, Radiol Clin North Am, 43 (2005), 67-77.

S.L. Wearne, New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales, Neuroscience, 136 (2005), 661-80. https://doi.org/10.1016/j.neuroscience.2005.05.053

G.A. Silva, Neuroscience nanotechnology: progress, opportunities and challenges, Nat. Rev. Neurosci, 7 (2006), 65-74. doi: 10.1038/nrn1827

D.J. Burn, J.T. O’Brien, Use of functional imaging in Parkinsonism and dementia, Mov Disord, 18 (2003), S88-95. https://doi.org/10.1002/mds.10568]

A.V. Singh, M. Khare, W. N. Gade, P. Zamboni, Theranostic Implications of Nanotechnology in Multiple Sclerosis: A Future Perspective, Autoimmune Diseases, 160830 (2012). doi:10.1155/2012/160830

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R. N. (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization,physicochemical characterizations and biological applications. Chem. Rev. 108, 2064-2110.

Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T. (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Adv. Drug Delivery Rev. In press. https://doi.org/10.1016/j.addr.2010.05.006

Laurent, S., Bridot, J. L., Vander Elst, L., and Muller, R. (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2, 427-449.

Mahmoudi, M., Hosseinkhani, M., Boutry, S., Simchi, A., Hosseinkhani, H., Journeay, W. S., Subramani, K.,Laurent, S. (2011) MRI tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine,Chem. Rev.In press. doi: 10.1021/cr1001832.

Corot, C., Robert, P., Idee, J. M., and Port, M. (2006), Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 58, 1471-1504.

Mahmoudi, M., Milani, A. S., and Stroeve, P. (2010) Surface Architecture of Superparamagnetic Iron Oxide Nanoparticles for Application in Drug Delivery and Their Biological Response: A Review. Int. J. Biomed. Nanosci. Nanotechnol. 1, 164-201.

Vellinga, M. M., Vrenken, H., Hulst, H. E., Polman, C. H., Uitdehaag, B. M., Pouwels, P. J., Barkhof, F., and Geurts, J. J. (2009) Use of ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced MRI to demonstrate diffuse inflammation in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) patients: an exploratory study. J. Magn. Reson. Imaging 29, 774-779.

Stoll, G., and Bendszus, M. (2010) New approaches to neuroimaging of central nervous system inflammation. Curr. Opin. Neurol. 23, 282-286.

Bonnemain, B. (2008) Nanoparticles: the industrial viewpoint. Applications in diagnostic imaging. Ann. Pharm. Fr. 66, 263-267.

Tang, T. Y., Howarth, S. P. S., Miller, S. R., Graves, M. J., U-King-Im, J. M., Li, Z. Y., Walsh, S. R., Patterson, A. J., Kirkpatrick, P. J., Warburton, E. A., Varty, K., Gaunt, M. E., and Gillard, J. H. (2008) Correlation of carotid atheromatous plaque inflammation using USPIO-enhanced MR imaging with degree of luminal Stenosis. Stroke 39, 2144-2147.

Kresse, M., Wagner, S., Pfefferer, D., Lawaczeck, R., Elste, V., and Semmler, W. (1998) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med. 40, 236-242.

Ballabh, Praveen; Braun, Alex; Nedergaard, Maiken (2004). The blood-brain barrier: an overview: Structure, regulation, and clinical implications, Neurobiology of Disease. 16 (1): 1-13. https://doi.org/10.1016/j.nbd.2003.12.016

D.B Vieira, L. F Gamarra, Getting into the brain: liposomebased strategies for effective drug delivery across the blood-brain barrier, Int J Nanomedicine. 11 (2016): 5381-5414. https://doi.org/10.2147/IJN.S117210

G. Batist, et al., Myocet, liposome-encapsulated doxorubicin citrate: a new approach in breast cancer therapy, Exp. Opin. Pharmacother, 312 (2002): 1739-1751.

Y. Avnir, K. Turjeman, D. Tulchinsky, A. Sigal, P.. Kizelsztein, D. Tzemach, A. Gabizon,Y.Barenholz , Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids. https://doi.org/10.1371/journal.pone.0025721

Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M (2003). Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med. 349, 2. 139-45. https://doi.org/10.1056/NEJMoa022328

Belogurov AA, Jr, Stepanov AV, Smirnov IV, Melamed D, Bacon A, Mamedov AE, et al. Liposome-encapsulated peptides protect against experimental allergic encephalitis. FASEB J 27 (2013), 222-231. doi: 10.1096/fj.12-213975

Agrawal M, Ajazuddin, Tripathi DK, Saraf S,Antimisiaris SG, Mourtas S, Hammarlund-Udenaes, Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release. 260 (2017) 61-77. https://doi.org/10.1016/j.jconrel.2017.05.019

Mueller RH, Keck CM, Drug delivery to the brain-realization by novel drug carriers. J. Nanosci. Nanotechnol. 4(2004), 471-483.

A. L. Armstead, B. Li,Nanomedicine as an emerging approach against intracellular pathogens, International Journal of Nanomedicine 6(2011), 3281-3293. doi: 10.2147/IJN.S27285

G. Modi, V. Pillay, Y. E. Choonara, Advances in the treatment of neurodegenerative disorders employing nanotechnology, Ann N Y Acad Sci. 1184 (2010), 154-172. doi: 10.1111/j.1749-6632.2009.05108.x.

Bernardi A, Frozza RL, Horn AP, Campos MM, Calixto JB, Salbego C, Pohlmann AR, Guterres SS, Battastini AM. 2010. Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of neuroinflammation. Neurochem Int. 57(6):629-3610. https://doi.org/1016/j.neuint.2010.07.012.

Wong H. L.; Wu X. Y.; Bendayan R., 2012. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Delivery Rev. 64, 686-700.

Soto-Castro D, Cruz-Morales JA, Ramírez Apan MT, Guadarrama P.,2012. Solubilization and anticancer-activity enhancement of Methotrexate by novel dendrimeric nanodevices synthesized in one-step reaction. Bioorg Chem.,41-2,13-21.

Duncan R, Izzo L.,2005. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev.,;57,2215-37 41.

Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL.,2006. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother.,50, 1696-700.

Tomalia DA.,2005, Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci.,30, 294-324.

Dufès C, Uchegbu IF, Schätzlein AG., 2005, Dendrimers in gene delivery. Adv Drug Deliv Rev., 57, 2177-2202.

Wolinsky JB, Grinstaff MW.,2008. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev., 60, 1037-1055.

Posadas I, Romero-Castillo L, El Brahmi N, Manzanares D, Mignani S, Majoral JP, Ceña V, 2017 Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo.Proc Natl Acad Sci U S A.114(37), E7660-E7669, https://doi.org/ 10.1073/pnas.1704858114

Jackson AL, Linsley PS. 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 9, 57-67.

Beg S, Samad AI, Alam M, Nazish I. 2011. Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain. CNS Neurol Disord Drug Targets. 10. 576-588.

Huang R, Ke W, Liu Y, Jiang C, Pei Y., 2008. The use of lactoferrin as a ligand for targeting the polyamidoaminebased gene delivery system to the brain. Biomaterials. 29, 238-246.

Dhanikula RS, Argaw A, Bouchard J-F, Hildgen P. 2008. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol Pharm., 5. 105-116.

Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, Jiang C. 2010. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials, 31. 5246-5257.

Hemmer R, Hall A, Spaulding R, Rossow B, Hester M, Caroway M, Haskamp A, Wall S, Bullen HA, Morris C. 2013. Analysis of biotinylated generation 4 poly (amidoamine)(PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier. Molecules, 18. 11537-11552.

Damien P., Mary P., Olivier R., Cédric-Olivier T., JeanJacques F., Jean-Pierre M., Anne-Marie C.,Remy P. (2001),Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy, J Transl Med. 7: 82. https://doi.org/10.1186/1479-5876-7-82

Laurent G, Mary P., Patrice M., Alexandrine M., CdricOlivier T., Olivier R., Pascal M., Grard B., Jean-Jacques F., Anne-Marie C., Rmy P., and Jean-Pierre M. (2007). Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers, Angewandte Chemie.

Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian XQ.( 2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 9, 2241-2257.4] Vinogradov, S.V., A.D. Zeman, E.V. Batrakova & A.V. Kabanov. 2005. Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J. Control. Rel. 107: 143-157.

Kumar, R.M., M. Sameti, et al . 2003. Polymeric nanoparticles for drug and gene delivery. In Encyclopedia of Nanoscience & Nanotechnology. Nalwa, H.S., Ed.: 1-19.

Friedrich, I., S. Reichl & C.C. Muller-Goymann. 2005. Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS). Int. J. Pharm. 305, 167-175.

Sivaji K.,Pitchai A., Soundarapandian N., Joseph B.Appadurai M.,Samuel G., Prakash V.,Rajaretinam R.K. (2016), Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model,Jr appl Biomed, 14, 157-169. https://doi.org/10.1016/j.jab.2016.01.004

C. Shi, et al., (2013). Incorporation of b-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3 K/GSK3b signaling, Biochimica Biophys. Acta (BBA)-Gener. 1830 (3) 2538-2544.

Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant,(2015). Binyamin O., Larush L., Frid K., Keller G., Friedman-Levi Y., Ovadia H., Abramsky O., Magdassi S., Gabizon R., Int J Nanomedicine. 10:7165-74. doi: 10.2147/IJN.S92704.eCollection 2015.

Ajay V. S.,Manish K. ,W. N. Gade,and Paolo Zamboni, Theranostic Implications of Nanotechnology in Multiple Sclerosis: A Future Perspective, 2012. doi: 10.1155/2012/160830

Smriti Ojha, Babita Kumar, A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis, (2017) Journal of Cellular Immunotherapy. https://doi.org/ 10.1016/j.jocit.2017.12.001

A. M. Khawaja, The legacy of nanotechnology: revolution and prospects in neurosurgery, International Journal of Surgery, 9 (2011), 608-614.

R. A. Freitas, Nanotechnology, nanomedicine and nanosurgery, International Journal of Surgery, vol. 3 (2005), 243-246.

G. D. M. Jeffries, J. S. Edgar, Z. Yiqiong, J. P. Shelby, F. Christine, and D. T. Chiu, "Using polarization-shaped optical vortex traps for single-cell nanosurgery," Nano Letters, vol. 7, no. 2, pp.415-420, 2007.

Merodio M, Irache JM, Eclancher F, Mirshahi M, Villarroya H. 2000. Distribution of albumin nanoparticles in animals induced with the experimental allergic encephalomyelitis. J Drug Target. 8:289-303.

Eitan E, Hutchison ER, Greig NH, Tweedie D, Celik H, Ghosh S, Fishbein KW, Spencer RG, Sasaki CY, Ghosh P. 2015. Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol. 273:151-160.

Heckman KL, Decoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C. 2013. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 7:10582-10596.

Dai H, Navath RS, Balakrishnan B, Guru BR, Mishra MK, Romero R, Kannan RM, Kannan S. 2010. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 5:1317-1329.

A.V. Singh, Recent Trends in Nano-Biotechnology Reinforcing Contemporary Pharmaceutical Design, Curr Pharm Des, 22 (2016), 1415-1427.

S.S. Ali, J.I. Hardt, K.L. Quick, J.S. Kim-Han, B.F. Erlanger, T.T. Huang et al., A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties, Free Radic Biol Med, 37(2004),1191- 1.

J.J. Liu, C.Y. Wang, J.G. Wang, H.J. Ruan, C.Y. Fan, Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning, J Biomed Mater Res A, 96 (2011), 13-20.

J.J. Liu, C.Y. Wang, J.G. Wang, H.J. Ruan, C.Y. Fan, Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning, J Biomed Mater Res A, 96 (2011), 13-20.

P.J. Darlington, et al., Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation, Ann. Neurol. 73 (3) (2013) 341-354

C. Yang, P.D. Robbins, Immunosuppressive exosomes: a new approach for treating arthritis, Int. J. Rheumatol. 2012 (2012).

W. Yin, et al., Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation, 36 (1) (2013), 232-240.

A.D. Pusic, R.P. Kraig, Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination, Glia 62 (2) (2014) 284-299.

K.L. Heckman, et al., Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain, ACS Nano 7 (12) (2013) 10582-10596.

J.-G. Leu, et al., The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and a-lipoic acid, (2012). Nanomed.: Nanotechnol. Biol. Med. 8 (5) 767-775.

Bengmark S, Mesa MD, Gil A. Plant-derived health: the effects of turmeric and curcuminoids, (2009). Nutr Hosp, 24, 273-81.

Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts,(2009). Altern Med Rev, 14, 226-46.

Ray B, Lahiri DK. Neuroinflammation in Alzheimer's disease: different molecular targets and potential therapeutic agents including curcumin,(2009). Curr Opin Pharmacol, 9, 434-44.

Lin Xie , Xiao-Kang Li, Shiro Takahara, Curcumin has bright prospects for the treatment of multiple sclerosis, (2011). Int Immunopharmacol, 11(3):323-30. doi: 10.1016/j.intimp.2010.08.013

Mohajeri M., Sadeghizadeh M., Najafi F., Javan M., (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology, 99, 156-167. https://doi.org/10.1016/j.neuropharm.2015.07.013

Anand P, Kunnumakkara AB, Newman RA, Aggarwal (2007) Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4(6), 807-818.

A.M. Alizadeh, et al., Encapsulation of curcumin in diblock copolymer micelles for cancer therapy, (2015). BioMed Res. Int. 824746. doi: 10.1155/2015/824746

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.