Fluorescent Unnatural Amino Acids: Introduction and their Potential Applications
Afsana Yashmeen
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai - 400019
Mursaleen Shaikh
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai - 400019
DOI: https://doi.org/10.36664/bt/2019/v66i1/149000
Keywords: No Keywords.
Abstract
Fluorescence spectroscopy is the simplest and most frequently used technique for probing complex biological events. Fluorescently labeled amino acids can show variety of properties, like environment sensitivity, chelation-enhanced fluorescence etc., which has provoked researchers to observe biological processes such as protein conformational changes, protein localization, enzyme activities and binding events. This review describes the design and applications of fluorescent unnatural amino acids. The capacity to incorporate fluorescent amino acids site-selectively into a protein or peptide gives the benefit of closely retaining the built-in function and structure of that protein.Downloads
References
Y.-W. Tang, M. Sussman, D. Liu, I. Poxton, J. Schwartzman, Molecular Medical Microbiology (Second Edition) 2015.
"Amino Acid". Cambridge Dictionaries Online. Cambridge University Press. 2015. Retrieved 3 July 2015.
(a) Q. Liu, J. Wang, B. J. Boyd, Talanta 2015, 136, 114. (b) E. Pazos, O. Vázquez, J. Mascareñas, M. E. Vázquez, Chem. Soc. Rev. 2009, 38, 3348. (c) E. H. W. Pap, T. B. Dansen, R. van Summeren, K. W. A. Wirtz, Exp. Cell Res. 2001, 265, 288. (d) C. -H. Tung, Peptide Sci. 2004, 76, 391. (e) A. K. Kenworthy, Methods 2001, 24, 289. (f) A. Hoppe, K. Christensen, J. A. Swanson, Biophys. J. 2002, 83, 3652. (g) T. Ozawa, Y. Umezawa, Supramol. Chem. 2002, 14, 271. (h) B. Z. Packard, D. D. Toptygin, A. Komoriya, L. Brand, Proc. Natl. Acad. Sci. U. S. A 1996, 93, 11640. (i) H. Peled, Y. Shai, Biochemistry 1994, 33, 7211. (j) I. Ben-Efraim, J. Strahilevitz, D. Bach, Y. Shai, Biochemistry 1994, 33, 6966. (k) N. Marmé, J. P. Knemeyer, M. Sauer, J. Wolfrun, Bioconjugate Chem. 2003, 14, 1133.
(a) G. W. Gokel, Dean’s Handbook of Organic Chemistry, 2nd ed.; McGraw-Hill: New York, 2004. (b) J. A. Ross, D. M. Jameson, Photochem. Photobiol. Sci. 2008, 7, 1301. (c) L. A. Munishkina, A. L. Fink, Biochim. Biophys. Acta, Biomembranes 2007, 1768, 1862.
(a) G. Bains, A. B. Patel, V. Narayanaswami, Molecules 2011, 16, 7909. (b) G. K. Bains, S. H. Kim, E. J. Sorin, V. Narayanaswami, Biochemistry 2012, 51, 6207. (c) A. Fujii, S. Hirota, T. Matsuo, Bioconjugate Chem. 2013, 24, 1218.
(a) L. J. Martin, B. Imperiali, Methods Mol. Biol. 2015, 1248, 201. (b) P. Talukder, S. C. Chen, T. Liu, E. A. Baldwin, S. J. Benkovic, S. M. Hecht, Bioorg. Med. Chem. Lett. 2014, 22, 5924.
(a) C. H. Lu, J. Li, X. L. Zhang, A. X. Zheng, H. H. Yang, Xi. Chen, G. N. Chen, Anal. Chem. 2011, 83, 7276. (b) K. J. Oh, K. J. Cash, K. W. Plaxco, J. Am. Chem. Soc. 2006, 128, 14018. (c) N. Marmé, J. P. Knemeyer, J. Wolfrun, M. Sauer, Angew.Chem. Int. Ed. Engl. 2004, 43, 3798. (d) M. Samanta, E. J. Petersson, Aust. J. Chem. 2013, 67, 686.
(a) S. S. Bag, S. Jana, A. Yashmeen, S. De, Chem. Commun. 2015, 51, 5242. (b) S. S. Bag, S. Jana, A. Yashmeen, K. Senthilkumar, R. Bag, Chem. Commun. 2014, 50, 433. (c) G. Loving, B. Imperiali, J. Am. Chem. Soc. 2008, 130, 13630. (d) E. Socher, B. Imperiali, ChemBioChem 2013, 14, 53. (f) A. Chatterjee, J. Guo, H. S. Lee, P. G. Schultz, J. Am. Chem. Soc. 2013, 135, 12540. (g) J. Wang, J. Xie, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 8738.
(a) D. Summerer, S. Chen, N. Wu, A. Deiters, J. W. Chin, P. G. Schultz, Proc. Natl. Acad. Sci. USA. 2006, 103, 9785. (b) R. Pantoja, E. A. Rodriguez, M. I. Dibas, D. A. Dougherty, H. A. Lester, Biophys. J. 2009, 96, 226.
N. Budisa, P. P. Pal, Biol. Chem. 2004, 385, 893.
G. Loidl, H. J. Musiol, N. Budisa, R. Huber, S. Poirot, D. Fourmy, L. J. Moroder, Pept. Sci. 2000, 6, 139.
Steward, L. E.; Collins, C. S.; Gilmore, M. A.; Carlson, J. E.; Ross, J. B. A.; Chamberlin, A. R. J. Am. Chem. Soc. 1997, 119, 6.
V. De Filippis, S. De Boni, E. De Dea, D. Dalzoppo, C. Grandi, A. Fontana, Protein Sci. 2004, 13, 1489.
J. Broos, E. Gabellieri, E. Biemans-Oldehinkel, G. B. Strambini, Protein Sci. 2003, 12, 1991.
H. Erlenmeyer, W. Grubenmann, HelV. Chim. Acta 1947, 30, 297.
N. B. Chapman, R. Scrowsto., R. Westwood, J. Chem. Soc. 1969, 1855.
(a) H. M. Rajh, J. H. Uitzetter, L. W. Westerhuis, C. L. Vandendries, G. I. Tesser, Int. J. Pept. Protein Res. 1979, 14, 68. (b) S. G. Cady, M. Sono, Arch. Biochem. Biophys. 1991, 291, 326. (c) P. V. Podea, M. L. Tosa, C. Palzs, F. D. Irimie, Tetrahedron: Asymmetry 2008, 19, 500.
P. Talukder, S. Chen, P. M. Arce, S. M. Hecht, Org. Lett. 2014, 16, 556.
P. Talukder, S. Chen, B. Roy, P. Yakovchuk, M. M. Spiering, M. P. Alam, M. M. Madathil, C. Bhattacharya, S. J. Benkovic, S. M. Hecht, Biochemistry 2015, 54, 7457.
(a) S. Chen, N. E. Fahmi, C. Bhattacharya, L. Wang, Y. Jin, S. J. Benkovic, S. M. Hecht, Biochemistry 2013, 52, 8580. (b) S. Chen, N. E. Fahmi, L. Wang, C. Bhattacharya, S. J. Benkovic, S. M. Hecht, J. Am. Chem. Soc. 2013, 135, 12924.
S. Chen, M. –L. Tsao, Bioconjugate Chem. 2013, 24, 1645.
P. Cheruku, J. –H. Huang, H. –J. Yen, R. S. Iyer, K. D. Rector, J. S. Martinez, H. –L. Wang Chem. Sci. 2015, 6, 1150.
(a) H. Wendt, C. Berger, A. Baici, R. M. Thomas, H. R. Bosshard, Biochemistry 1995, 34, 4097. (b) J. H. Wolf, J. Korf, J. Pharm. Biomed. Anal. 1992, 11, 99 (c) R.M. Christie, Rev. Prog. Color. Relat. Top. 1993, 23, 1.
(a) G. Brufola, F. Fringuelli, O. Piermatti, F. Pizzo, Heterocycles 1996, 43, 127. (b) I. Yavari, R. HekmatShoar, A. Zonouzi, Tetrahedron Lett. 1998, 39, 2391.
M. P. Brun, L. Bischoff, C. Garbay, Angew. Chem. Int. Ed. 2004, 43, 3432.
(a) A. R. Katritzky, T. Narindoshvili, P. Angrish, Synthesis 2008, 13, 2013.
L. E. Steward, C. S. Collins, M. A. Gilmore, J. E. Carlson, J. B. A. Ross, A. R. Chamberlin, J. Am. Chem. Soc. 1997, 119, 6.
D. Summerer, S. Chen, N. Wu, A. Deiters, J. W. Chin, P. G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9785.
V. W. Cornish, D. R. Benson, C. A. Altenbach, K. Hideg, W. L. Hubbell, P. G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2910.
M. Sisido, T. Hohsaka, Appl. Microbiol. Biotechnol. 2001, 57, 274.
(a) G. Loving, B. Imperiali, J. Am. Chem. Soc. 2008, 130, 13630. (b) J. Zhang, B. J. Wallar, C. V. Popescu, D. B. Renner, D. D. Thomas, J. D. Lipscomb, Biochemistry 2006, 45, 2913. (c) K. Torok, D. J. Cowley, B. D. Brandmeier, S. Howell, A. Aitken, D. R. Trentham, Biochemistry 1998, 37, 6188. (d) Q. Z. Wang, D. S. Lawrence, J. Am. Chem. Soc. 2005, 127, 7684.
(a) G. Turcatti, S. Zoffmann, J. A. Lowe III, S. E. Drozda, G. Chassaing, T. W. Schwartz, A. Chollet, J. Biol. Chem. 1997, 272, 21167.(b) B. N. Goguen, G. S. Loving, B. Imperiali, Bioorg. Med. Chem. Lett. 2011, 21, 5058. (c) G. Loving, B. Imperiali, J. Am. Chem. Soc. 2008, 130, 13630.
M. E. Vazquez, D. M. Rothman, B. Imperiali, Org. Biomol. Chem. 2004, 2, 1965.
M. E. Vazquez, J. B. Blanco, B. Imperiali, J. Am. Chem. Soc. 2005, 127, 1300.
M. E. Vázquez, M. Nitz, J. Stehn, M. B. Yaffe, B. Imperiali, J. Am. Chem. Soc. 2003, 125, 10150.
M. Kuragaki, M. Sisido, J. Phys. Chem. 1996, 100, 16019.
H. Sasaki, M. Sisido, Y. Imanishi, Langmuir 1991, 7, 1944.
H. Sasaki, M. Sisido, Y. Imanishi, Langmuir 1991, 7, 1949.
T. Matsubara, H. Shinohara, M. Sisido, Macromolecules 1997, 30, 2651.
Z. Xiang, L. Wang, J. Org. Chem. 2011, 76, 6367.
(a) M. Sisido, Prog. Polym. Sci. 1992, 17, 699. (b) M. Sisido, AdV. Photochem. 1997, 22, 197. (c) T. Hohsaka, Y. Ashizuka, H. Murakami, M. Sisido, J. Am. Chem. Soc. 1996, 118, 9778. (d) T. Hohsaka, D. Kajihara, Y. Ashizuka, H. Murakami, M. Sisido, J. Am. Chem. Soc. 1999, 121, 34.
R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev. 2010, 110, 2579.
A. T. Krueger, B. Imperiali, Chem Bio Chem 2013, 14, 788.