The Role of CCUS in a Low-Carbon Future: A Critical Review

Mohit Gedam

DOI: https://doi.org/10.36664/bt/2023/v70i1/173202

Keywords: Carbon capture, CO<sub>2</sub> utilization, CO<sub>2</sub> storage, climate change mitigation, carbon neutrality


Abstract

With global CO2 emissions continuing to rise, driving concerning rates of climate change, carbon capture,
utilization, and storage (CCUS) technologies have attracted renewed interest for their potential to reduce
atmospheric greenhouse gas levels. This review provides a wide-ranging overview of current and emerging
approaches to CCUS. Fundamental concepts in CCUS, including pre-combustion capture, post-combustion
capture, oxyfuel combustion, and CO2 mineralization are discussed. The spectrum of technologies available for
transporting, utilizing, and storing captured CO2 is then explored. The use of pipelines, ships, rail, and trucks for
moving compressed or liquefied CO2 has been examined for transportation. Potential utilization options include
enhanced oil recovery, fuel synthesis, microbial conversion, and mineral carbonation. Analysis of geological
sequestration in saline aquifers and depleted oil/gas reservoirs, ocean storage, and mineral carbonation has
been done for storing CO2. The maturity level, costs, scalability, and technical feasibility of different CCUS
technologies have been outlined. Critical challenges highlighted include the energy-intensive nature of current
capture processes, infrastructure needs for transport and storage, and costs. This review synthesizes current
technical knowledge on CCUS to identify the most promising approaches to reducing atmospheric CO2 levels
cost-effectively. It is then concluded by identifying critical research priorities, including improving capture
efficiency, developing robust storage site assessments, monitoring technology, using captured CO2 for sustainable
products, and accelerating adoption through policy incentives. If global multi-disciplinary efforts are taken, CCUS
can play a significant role in achieving carbon-neutral energy systems worldwide. This review provides a
framework for understanding the current state of CCUS that can guide researchers and policymakers in
advancing the deployment of CCUS technologies to areas where they hold the most potential to combat climate
change.

Downloads

Download data is not yet available.

References

Leung, D. Y., Caramanna, G., Maroto-Valer, M. M., Renew. Sust. Energ. Rev. 2014, 39, 426.

Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R. S., Nat. Clim. Change. 2013, 3, 105.

Paula, A., Damien, A., Steven, C., OECD, Economic Outlook 2022, 56, 1.

Cuéllar-Franca, R.M., Azapagic, A., J. CO2 Util. 2015, 9, 82.

Aaron, D., Tsouris, C., Sep. Sci. Technol. 2005, 40, 321.

Benson, S. M., Cole, D. R., J. Geosci. Environ. Prot. 2008, 4, 325.

Samanta, A., Zhao, A., Shimizu, G. K., Sarkar, P., Gupta, R., Ind. Eng. Chem. Res. 2012, 51, 1438.

Thomas, S., Cecila, T., International Energy Agency, World Energy Outlook 2022, 26, 1.

Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., & Aiken, T., Int. J. Greenh. Gas Control 2010, 4, 659.

Aresta, M., Dibenedetto, A., Angelini, A., J. CO2 Util. 2013, 3, 65.

Enright, N.Z., R. F.K., K. Klein G., S. Levis, P. Levy, M. Lomas, and B. Poulter., Earth Syst. Sci. Data Discuss. 2012, 5, 165.

Blackford, J. C., Jones, N., Proctor, R., Holt, J., Mar. Pollut. Bull. 2008, 56, 1461.

Matter, J. M., Broecker, W. S., Gislason, S. R., Gunnlaugsson, E., Oelkers, E. H., Energy Procedia 2011, 4, 5579.

Wang, T., Lior, N., Gong, M., Clean Technol. 2015, 80, 414.

Ashworth, P., Jeanneret, T., Stenner, R., Hobman, E. V., Renew. Sust. Energ. Rev. 2013, 37, 7446.

Shuzhuang, S., Hongman, S., Paul T.W., Chunfei, W., Sustain. Energy Fuels 2021, 5, 4546.

Colin A.S., Advances in Carbon Capture 2020, 16, 357.

Matthew, L., Nature 2023, 613, 216.

Chengbo Z., Leiming W., Liang H., Nicholas M.M., Tianshan X., Jabor R., Qiang W., J. Energy Chem. 2023, 7, 1.

Yi Zo, Fei X, Dan W, Yuxin W, Ming W., Eng. Fail. Anal. 2024, 155, 107745.

Yang Y, Wenqing X, Yan W, Junru S, Yixi W, Zanbu G, Qiang W, Tingyu Z, Chem. Eng. J. 2022, 450, 4.

Vikram V., Debanjan C., Udayan S., Yashvardhan V., Resour. Conserv. Recycl. 2021, 175, 105829.

Zhen-liang G., Xiao-lü B., Yü-bo D., Wen-chao Z., Ding-ding Y., Hai-ping Y., J. Fuel Chem. Technol. 2023, 51, 293.

Zongze L., Shuzhen C., Xin H., Changlei Q., Curr. Opin. Green Sustain. Chem. 2023, 40, 100771.

Bo S., Boyang F., Chun W., Jingdong X., Energy 2024, 288, 129694.

Ali A.B., Jurandir I.Y., Energy 2023, 267, 126493.

Xiaojuan X., Kai L., Xiangqian L., Yunbing H., Int. J. Greenh. Gas Control 2023, 128, 103960.

Juanita G.D., Romain S., Massimo P., J. Clean. Prod. 2023, 425, 103960.

Eiji K., Akito O., Benjamin D.L., Appl. Energy 2022, 328, 120183.

Yuang M., Huixia L., Shizhang C., Xu Z., Yusheng Z., Xinwang S., Haiying C., Appl. Energy 2024, 353, 122122.

Mingxu L., Nianpeng H., Li X., Changhui P., Huai C., Guirui Y., Renew. Sust. Energ. Rev. 2023, 183, 113512.

Xiaolin Y., Kai W., Qunyang D., Energy Policy 2023, 183, 113803.

Hitesh Gupta, Dibakar Rakshit, J. Clean. Prod. 2023, 425, 138825.

Muhammad A.S., Samar A.L.J., Daniel B., Lourdes F.V., Giovanni P., Sci. Total Environ. 2021, 790, 148081.

Osman, A.I., Mehta, N., Elgarahy, A.M., Environ. Chem. Lett. 2021, 19, 4075.

Sposob, M., Wahid, R., Fischer, K., Rev. Environ. Sci. Biotechnol. 2021, 20, 1087.

Hussain, S., Ulhassan, Z., Brestic, M., Photosynth. Res. 2021, 150, 5.

Rodríguez-Espinosa, T., Navarro-Pedreño, J., Gómez-Lucas, I. Environ. Geochem. Health 2021, 43, 5065.

Flores, M.C., Gonçalves, B.J.A., Figueiredo, K.C., Braz. J. Chem. Eng. 2021, 38, 777.