Basic Understanding of Quantum Dots: The Artificial Atoms of the Nanoworld

Ved Sachin Karawale

Department of Chemical Engineering; Institute of Chemical Technology; Mumbai 400019

Drashti Jayesh Sodha

Department of Chemical Engineering; Institute of Chemical Technology; Mumbai 400019

DOI: https://doi.org/10.36664/bt/2023/v70i1/173195

Keywords: Quantum dots,synthesis, quantum confinement, Q-LEDs, in-vivo imaging


Abstract

Nanotechnology has been a conversation starter in the scientific communities for decades. The advancement of
technologies that have helped humans go beyond the microscale to the nanoscale with its enthralling new
concepts in store has opened up various avenues for research. One of the fascinating nanostructures we shall
discuss in this paper are Quantum Dots (QDs). QDs are clusters of semiconductor atoms confined in all three
dimensions to the nanoscale, resulting in properties quite distinct from molecular structures and bulk materials.
The most notable property of quantum dots is the production of narrow and specific wavelengths of emitted
light with high spectral resolution and longer lifetimes, making them suitable for real-time in vitro and in vivo
imaging. This, coupled with the cost-effective control over the sizes of QDs, leads to the tuning of the emitted
wavelengths. Furthermore, carefully coating various functionalities enhances the specificity and makes them
suitable for in vivo targeting. QDsare being used for recent development in various fields, such as light-emitting
diodes, photovoltaics, etc. This review paper will focus mainly on the various properties of quantum dots, and
the reasons behind the same, with akeen focus on the application of QDs in biomedical imaging, biological
sensing, and so on. This review hopes to capture a basic understanding of QDs and their properties with a keen
focus on understanding the recent developments and biomedical applications.

Downloads

Download data is not yet available.

References

Fang, M., Peng, C., Pang, D-W., Li, Y., Cancer Biol Med. 2012, 9, 151. [

Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., Nie, S., Annu Rev Anal Chem (PaloAlto Calif). 2013, 6, 143.

Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M.,Gambhir, S. S., Weiss, S., Science. 2005, 307, 538. [4] Smith, A. M., Nie, S., Nat Biotechnol. 2009, 27, 732.

Åkerman, M. E., W. Chan, W. C., Laakkonen, P., Bhatia, S. N., Ruoslahti, E., Proc Natl Acad Sci USA. 2002, 99, 12617.

Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., Mathies, R. A., Proc Natl Acad Sci USA. 1995, 92, 4347.

Fang, M., Peng, C., Pang, D-W., Li, Y., Cancer Biol Med. 2012, 9, 151.

Devendra Sen, Awesh Yadav, Ajay Shukla, Asian J. Biomater. Res. 2015, 1, 46.

Debasis Bera, Lei Qian, Teng-Kuan Tseng, Paul H. Holloway, Materials (Basel). 2010, 3, 2260.

Armăşelu, A., IntechOpen. 2017, 1, 7.

Smith, A. M., Ruan, G., Rhyner, M. N., Nie, S., Annals of Biomedical Engineering. 2006, 34, 3.

Walling, M. A., Novak, J. A., E Shepard, J. R., Int J Mol Sci. 2009, 10, 441.

Robert E. Bailey, Andrew M. Smith, Shuming Nile, Physica E. 2004, 25, 1.

Ankhi Maiti, Sagarika Bhattacharyya, Int. J. Chem. Eng. 2013, 3, 37.

C. Tablero, J Appl. Phys. 106, 2009, 106, 074306.

Dusica Maysinger, Jeff Ji, Eliza Hutter, Elis Cooper, J Neurosci. 2016, 9, 480.

Tomas Koltai, Stephan Joel Reshkin, Rosa Angela Cardone, Antiangiogenic Drugs as Chemosensitizers in Cancer Therapy. 2022,18, 147.

Andrew M. Smith, Shuming Nie, Nat Biotechnol. 2009, 27, 732.

Omid Mashinchian, Mohammad Johari-Ahar, Behnaz Ghaemi, Mohammad Rashidi, Jaleh Barar, Yadollah Omidi, Bioimpacts. 2014, 4, 149.

Jana Drbohlavova, Vojtech Adam, Rene Kizek, Jaromir Hubalek, Int J Mol Sci. 2009, 10, 656.

Jun Tanaka, Sena Suzuki, Reo Hatta, Kohkai Mukai, Jpn. J. Appl. Phys. 2023, 62, SG0401.

Freddy T. Rabouv, Celso de Mello Donega, Top Curr Chem. 2016, 58, 374.

Ute Resch-Genger, Markus Grabolle, Sara Cavaliere-Jaricot, Roland Nitschke, Thomas Nann. Nat Methods. 2008, 5, 763.

Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman, Nat Mater. 2006, 5, 435.

Xie Xiaodong, Zhang Yingying, Li Fengqiao, Lv Tingting, Li Ziying, Chen Haijun, Jia Lee, Gao Yu, Curr Cancer Drug Targets. 2018, 18, 1.

Gopal Ramalingam, Poopathy Kathirgamanathan, Ganesan Ravi, Thangavel Elangovan, Bojarajan Arjun Kumar, Nadarajah Manivannan and Kaviyarasu Kasinathan. IntechOpen. 2020, 1, 1.

I. Singh, R. Arora, H. Dhiman, R. Pahwa-Turk, J. Pharm Sci. 2018, 15, 219.

Tetyana Torchynska, Yuri Vorobiev, IntechOpen. 2010, 1, 8.

Madan Singh, Monika Goyal, Kamal Devlal, J. Taibah Univ. Sci. 2018, 12, 470.

Gorer S., Hodes G., J Phys Chem. 1994, 98, 5338.

Vossmeyer T., Katsikas L., Giersig M., et al., J Phys Chem. 1994, 98, 7665.

Li J., Wang L-W., Phys Rev B. 2005, 72, 125325.

Mastai Y, Hodes G., J Phys Chem B. 1997, 101, 2685.

Masumoto Y., Sonobe K., Phys Rev B. 1997, 56, 9734.

Robert J. Dillon, Christopher J. Bardeen, J.Phys.Chem.A. 2012, 116, 45.

Michael T. Broud, Mohsen Samandari, Lu Yu, David P. Harper, and David J. Keffer, J. Phys. Chem. C 2023, 127, 13639.

Benjamin C. M. Martindale, Georgina A. M. Hutton, Christine A. Caputo, Erwin Reisner, J. Am. Chem. Soc. 2015, 137, 6018.

A.J. Nozik, Phys. E, 2002, 14, 115.

Prashant V. Kamat, J. Phys. Chem. Lett. 2013, 4, 908.

Jeehye Kim, Youn Jeong Jang, Woonhyuk Baek, A. Reum Lee, Jae-Yup Kim, Taeghwan Hyeon, Jae Sung Lee, ACS, Appl. Mater. Interfaces. 2022, 14, 603.