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Quantum computation as the name suggests is the use of quantum phenomena to perform computational tasks. As 

predicted by Richard Feynman, an extraordinarily brilliant physicist of the 20th century, quantum computers can do 

many tasks that an ordinary computer cannot. In this paper, an attempt is made to obtain the electronic energy levels 

of hydrogen molecule and lithium hydride by employing quantum algorithm based on variational principle. An 

introduction to basic ideas of quantum computation and qubit Hamiltonian for these molecules are summarized.  It is 

a common misconception that the term ‘quantum’ is associated with ‘complicated’, and complex mathematical 

equations and hence cannot be learnt easily. The objective of this paper is to eliminate this misconception and that any 

quantum phenomenon can be understood with very little mathematics and very few equations. 
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“When we get to the very, very small world—say circuits 

of  a few  atoms—we have a lot of new things that would 

happen that represent completely new opportunities for 

design. Atoms on a small scale behave like nothing on a 

large scale, for they satisfy the laws of quantum mechanics. 

So, as we go down and fiddle around with the atoms down 

there, we are working with different laws, and we can 

expect to do different things. We can manufacture in 

different ways. We can use, not just circuits, but some 

system involving the quantized energy levels, or the 

interactions of quantized spins.” 

– Richard P. Feynman 

 

1. Introduction and basic ideas  
Quantum computing was proposed almost four decades 

back by Yuri Manin and Richard Feynman but 

surprisingly, the progress is not swift as that happened in 

classical computing.  

What is the difference between classical and quantum 

computing? 

Like ‘bits’ in classical computing, the fundamental unit in 

quantum computing is a ‘qubit’. The difference between a 

qubit and a bit is that while a bit can be either 0 or 1, a qubit 

can be either 0,1, or a mixture of 0 AND 1 at the same 

instant. A classical approach would consider the system as 

a classical ‘physical’ model while a quantum chemical 

method, broadly, would be based on the Schrödinger’s 

equation and computation can be used whenever necessary. 

Classical computation is based on two states, 0 and 1, i.e. a 

binary system. Quantum computation is based on more 

than two states, 0, 1 and arbitrary superposition of the two  

States. In quantum computation, a qubit is a two-state 

system where the linear superposition are also allowed 

states. For example, spin of electron has two possible states 

– up-spin (represented as|0⟩) and down-spin (represented 

as|1⟩). Apart from the two, we also consider an arbitrary 

linear combination of the two states, i.e. 𝑎|0⟩ + 𝑏|1⟩. 

This difference arises due to two major attributes – 

superposition and entanglement, which are inherent 

outcome of quantum mechanics itself, which set a qubit 

different from a classical bit. Superposition is a linear 

combination of distinct quantum states, which in turn form 

a new and valid quantum state. The famous double slit 

experiment of Thomas Young is a ‘classical example of 

quantum mechanical superposition. Entanglement on the 

other hand is a quantum mechanical state in which a 

particle cannot be described explicitly. An entanglement 

will become disentangled from the results of 

measurements. It is to be noted here that the outcome of the 
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measurements on individual qubits could be either 0 or 1. 

However, the outcome of the measurement on one qubit 

will always be associated with the measurement on the 

other qubit. 

This makes a quantum computer to accommodate a large 

number of logical gates simultaneously; so this leads to a 

further question –  

What are logical gates and how do they differ in 

classical computers and quantum computers?  

As we all know, in an electrical circuit, logic gates will 

make choices based on a combination of digital signals 

coming from the inputs. Most of the logic gates have two 

inputs and one output. Some of the common logic gates are 

AND (the output is true when only both the inputs are true, 

or else false), OR (output is true if either or both the inputs 

are true) XOR (exclusively or – implying that the output is 

true only when one of the inputs is true) and many more. 

Like classical logic gates quantum logic gates are the 

building blocks for quantum computers and they work by 

the combination of qubits. However, due to the 

superposition phenomenon, quantum logic gates exist 

simultaneously. Not only that, quantum gates are reversible 

due to unitarity of quantum mechanics. For example, 

classically, addition of 5 and 2 gives 7. Using quantum 

algorithms, addition is supposed to be reversible, so in this 

example, from 7, we should know which two numbers 

were added, 5 and 2, or 6 and 1, and so on. Similar to the 

gates used in classical computation, there are quantum 

gates in quantum computing.  

This reversibility is an extraordinary advantage because 

quantum gates never lose information. Qubits that are 

entangled on their way into a quantum gate remain 

entangled in the way out, keeping the information safely 

intact throughout the transition. Many of the classical gates 

found in conventional computers, on the other 

hand, do lose information, and hence cannot retrace their 

steps. It should also be noted here that the number of qubits 

in the input and output however must be equal.  

How does a quantum computer work? 

Unlike digital computing, vectors and matrices are integral 

parts of quantum computing. In a quantum computer, 

elemental particles such as electrons and photons or ions 

are involved. Their charge or polarization are represented 

in qubits. The nature and behavior of these particles form 

the basis of quantum computing.  

A quantum gate is implemented physically as the quantum 

mechanical evolution of an isolated quantum system. The 

transformation the system undergoes is governed by the 

famous Schrödinger’s equation 

 

 

Where ‘H’ is the Hamiltonian, which specifies the physical 

fields, forces and energy and ‘U’ is a special kind of matrix, 

known as unitary matrix.  

In quantum computing, size of this matrix is decided by the 

number of qubits. For ‘n’ number of qubits, the 

representation will be a square matrix of 2n x 2n elements. 

The concepts of vectors, phases and matrix representations 

make the understanding of quantum computing different, 

but not difficult.  

 

For example, let a system of two particles exist in such a 

way that the total spin of the system is zero. If the spin of 

one of the particles is measured on a particular axis and 

found to be anticlockwise, a measurement of the spin of the 

other particle (of course, along the same axis) will depict a 

spin state to be clockwise. It appears as though the other 

entangled particle has somehow “felt” that a measurement 

is performed on the other and “knows” what the outcome 

should be. But, in reality, this response happens without 

any ‘dialogue’ between the entangled particles. 

The superposition can be shown as a two matrix 

representation - either as a row matrix, (‘bra’)   or a column 

matrix (‘ket’) as given below, 

⟨1|=  [0 1]     ;      ⟨0| =  [1 0]  (bra)      

|1⟩ = [
0
1

]     ;      |0⟩ = [
1
0

]  (ket) 
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In terms of accuracy and time, quantum computation 

surpasses the classical computation methods. Some of the 

problems which have taken a very long time on a classical 

computer, only take polynomial time on a quantum 

computer. The classic example is a search in a database – 

for instance if it requires 2n -1 steps to solve a problem 

classically, it only takes a square root of 2n steps by a 

quantum algorithm called Grover’s algorithm [1]. 

Quantum gates are defined using Pauli matrices, which are 

defined as,  

𝑋 = [
0 1
1 0

] ;  𝑌 = [
0 −𝑖
𝑖 0

] ;  𝑍 = [
1 0
0 −1

]. 

The most important measurement in quantum computation 

is the phase, as the NOT, EXOR quantum gates will work 

only on the basis of change in phase. The measurement of 

phase is done by the use of a phase gate, also known as T-

gate (U). Control-NOT gate (Uπ) has a target and a control. 

If control is 1, the target value is changed, similar to XOR 

gate (1 ⊕ 1 = 0 𝑜𝑟 1 ⊕ 0 = 1) and if the control is 0, 

there is no change in the value of target. Hadamard gate (H 

or U-π/2) forms a superposition of the two qubits.  

𝑈 = [
1 0
0 𝑒𝑖𝜋 4⁄ ] , Uπ (0

1
) =  (0 1

1 0
) (0

1
) = (1

0
) 

U−π/2 (0
1

) =  
1

√2
( 1 1

−1 1
) (0

1
) =

1

√2
(1

1
)

=
1

√2
(|0⟩ + |1⟩) 

An algorithm is a specific procedure to solve a defined 

problem. A quantum algorithm uses quantum gates; 

sometimes, hybrid algorithms are constructed, like 

variational quantum eigensolver (VQE) to reduce the 

complexity of using more gates. 

2. Quantum  mechanics to quantum 

computing 

A molecule is characterized by its ground-state and excited 

state energies, defining its electronic structure [2].  

The first step in solving a quantum mechanical problem is 

to write the corresponding expression of Hamiltonian – in 

simple terms, describing a dynamic system in terms of 

coordinates in space and time. Hence the first task in 

quantum computing is to encode a Hamiltonian of a 

quantum particle such as an electron, which is a fermion 

(fermion is a subatomic particle that has a half-integral spin 

and follows the statistical description given by Fermi and 

Dirac) into a qubit Hamiltonian. For example, the 

fermionic Hamiltonian of the hydrogen molecule, in 

atomic units can be written as given below  

𝐻𝐻2
= − ∑

∇𝑖
2

2
𝑖

− ∑
𝑍𝐼

|𝑟̅𝑖 − 𝑅̅𝐼|
+

1

2
∑

1

|𝑟̅𝑖 − 𝑟̅𝑗|
𝑖≠𝑗𝑖,𝐼

 

Here, 

 − ∑
∇i

2

2
i

 is the kinetic energy term,  

+
1

2
∑

1

|r̅i − r̅j|i≠j

 is for electron − electron repulsion,  

− ∑
𝑍𝐼

|𝑟̅𝑖 − 𝑅̅𝐼|
 is nucleus − electron attraction term

𝑖,𝐼

. 

The first quantization, and the wave function have to be 

projected in the form of Slater determinants of Basis sets 

to compress the exponentially increased terms. Here, we 

use the basis set Slater-Type Orbitals – 3 Gaussian orbitals 

(abbreviated as STO-3G, a linear combination of atomic 

orbitals). To further compress the terms, we resort to 

creation and annihilation operators a† and a. In simple 

terms, they increase/decrease the number of particles by 

one in a particular energy state/orbital, and can be 

interpreted as excitation/de-excitation to higher/lower 

levels... We write a Slater determinant indicating which 

spin orbitals are occupied by electrons in terms of 

occupation number vector, |𝑓⟩ in Fock space.  

𝜓(𝑥0, … , 𝑥𝑁−1) = |𝑓𝑀−1, … , 𝑓𝑝, … , 𝑓0⟩ = |𝑓⟩ 

𝑓𝑝 = {
1, 𝑤ℎ𝑒𝑛 𝜙𝑝 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑

0, 𝑤ℎ𝑒𝑛 𝜙𝑝 𝑖𝑠 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
 

The action of creation and annihilation operators can be 

written as: 
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𝑎𝑝|𝑓𝑀−1, 𝑓𝑀−2 … 𝑓0⟩

=  𝛿𝑓𝑝,1
(−1)∑ 𝑓𝑖

𝑝−1
𝑖=0 |𝑓𝑀−1, 𝑓𝑀−2, … , 𝑓𝑝

⊕ 1, … , 𝑓0⟩ 

𝑎𝑝
†|𝑓𝑀−1, 𝑓𝑀−2 … 𝑓0⟩

=  𝛿𝑓𝑝,0
(−1)∑ 𝑓𝑖

𝑝−1
𝑖=0 |𝑓𝑀−1, 𝑓𝑀−2, … , 𝑓𝑝

⊕ 1, … , 𝑓0⟩ 

Here, (−1)∑ 𝑓𝑖
𝑝−1
𝑖=0  enforces exchange in antisymmetric 

fermions and 𝛿 is Kronecker symbol. a† and ‘a’ operators 

use XOR gate (which is equivalent to CNOT quantum 

gate)  

where0 ⨁ 1 = 1 𝑎𝑛𝑑 1 ⨁ 1 = 0.  

The Hamiltonian has to be expressed in a form that the 

computer can understand. Hence, we need to encode the 

Hamiltonian in a computer-friendly language. Here, we use 

a special type of encoding, the Jordan-Wigner encoding, 

which is a transformation that maps spin operators on 

fermionic creation and annihilation operators. We store the 

occupation number of a spin orbital in |0⟩ and |1⟩ state of 

a qubit:  

|𝑓𝑀−1, 𝑓𝑀−2, … 𝑓0⟩  →  |𝑞𝑀−1, 𝑞𝑀−2, … 𝑞0⟩   ;   𝑞𝑝 = 𝑓𝑝

∈ {0,1} . 

The number operator 𝑛𝑖 = 𝑎𝑖
†𝑎𝑖 counts number of 

electrons in the ith orbital:𝑛𝑖|𝑓⟩ = 𝑓𝑖|𝑓⟩. We need to 

express the creation and annihilation operators in terms of 

gates.  

 

The annihilation operator is casted in terms of Pauli 

matrices: 

𝑎𝑝 = 𝑄𝑝 ⊗ 𝑍𝑝−1 ⊗ … 𝑍0 

Where 𝑍𝑝−1 ⊗ … 𝑍0 computes the parity of the state, and 

𝑄𝑝 changes the occupation number of pth spin orbital. Q is 

defined as 

𝑄 = |0⟩⟨1| = [
1
0

] [0 1] =
1

2
(𝑋 + 𝑖𝑌), 

𝑄† = |1⟩⟨0| = [
0
1

] [1 0] =
1

2
(𝑋 − 𝑖𝑌). 

Finally, the Hamiltonian can be expressed as a linear 

combination of Pauli operators  

𝐻 = ∑ ℎ𝑗𝑃𝑗 = ∑ ℎ𝑗 ∏(𝑃𝑎𝑢𝑙𝑖 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠)
𝑖𝑗𝑗

 

Here, we have successfully converted a fermionic 

Hamiltonian into a qubit Hamiltonian. 

3. Variational Algorithm 

Quantum computation is unitary.  The unitary method is 

a technique for solving a problem by first finding the value 

of a single unit, and then finding the necessary value by 

multiplying the single unit value [3]. Hence, the evolution 

of an initial state Ψ(t0) to a final state Ψ(t) is affected by a 

unitary operator Û = e-iĤt, where Ĥ is the Hamiltonian 

operator of the quantum system [4]. As Û acts on an energy 

eigenstate, |𝐸𝑛⟩ of Ĥ, a phase factor 𝑒−𝑖𝐸𝑛𝑡 ћ⁄  is multiplied 

to the initial state. Thus, to find the lowest energy 

eigenstate |𝐸0⟩ we have to make a phase estimation.  

Rayleigh-Ritz variational principle states that for a trial 

wavefunction |𝜓(𝑟1 , 𝑟2 … )⟩ with parameters {ri}, the 

expectation value of Hamiltonian in this total state is 

greater than or equal to the ground state energy: 

⟨𝜓|𝐻|𝜓⟩ ≥ 𝐸0 

Thus, we can find a good approximation to the ground state 

energy by minimizing with respect to parameters {ri}[5]. 

The algorithm is as given below: 

Step1: Preparation, storage and measurement of the wave 

function on a quantum computer. This involves mapping 

of the problem Hamiltonian using a collection of qubits 

that were discussed above. This is followed by building a 

quantum circuit.  

 

Step2: We now use classical computer to update the 

parameters using an optimized algorithm. The Hamiltonian 

is evaluated with respect to initial quantum state 

parametrized in terms of variables that are classically 

optimized to minimize the Hamiltonian [6].  
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4. Quantum simulation with quantum 

algorithms  

Open Fermion is an open-source software developed for 

quantum simulation of in chemistry and materials science 

using quantum algorithms. The first step in this simulation 

is to specify the molecular properties. For this purpose, we 

need to specify the coordinates, bond length, spin and 

charge. We also need to specify the basis set in which we 

hope to expand the wave function to solve the Schrödinger 

equation. In the present study, simulations for hydrogen 

molecule and LiH were attempted and an STO-3G basis set 

was used. In second-quantized form, the Hamiltonian for 

hydrogen molecule has one-electron and two-electron 

integrals. These integrals are evaluated by classical 

algorithm using Psi4, an open source program.  Here, only 

four spin orbitals are required – two each for an atom with 

up and down spin. The Jordan-Wigner encoded 

Hamiltonian was solved by another open source software, 

Open Fermion.  

5. Inspiration from classical methods 

We briefly sketch the chain of arguments through the 

classical methods which eventually lead to the quantum 

algorithm.  

First of all, the Hartree-Fock (HF) method gives a Slater 

determinant wave function after optimization of the spatial 

form of spin orbitals in order to minimize the energy. As a 

first approximation, the Coulomb repulsion among the 

electrons were neglected. The function was modified by 

considering the motion of each electron in the mean field 

of other charges. For N electrons, one solves N coupled 

equations, first calculating position of each electron, then 

updating the potential, iteratively, until convergence is 

achieved. In the second quantized form, the Fock operator 

is diagonalized to arrive at a self-consistent field (SCF).  

We would like to illustrate the construction of state of H2 

on a quantum computer using UCC (Unitary Coupled 

Cluster Operator) with single and double excitations 

(UCCSD). 

In H2, each atom (A, B) contributes one orbital and there 

are two possible Z-components of spins for each orbital (up 

(u) and down (d)). So, the orbitals are:|1𝑠𝐴𝑢⟩,

|1𝑠𝐴𝑑⟩, |1𝑠𝐵𝑢⟩, |1𝑠𝐵𝑑⟩. The overlap of the orbitals gives 

rise to molecular orbital basis with single electron orbitals 

with four possibilities: 

|𝜎𝑏𝑢⟩ =
1

√𝑁𝑏

(|1𝑠𝐴𝑢⟩ + |1𝑠𝐵𝑢⟩ 

|𝜎𝑏𝑠⟩ =
1

√𝑁𝑏

(|1𝑠𝐴𝑑⟩ + |1𝑠𝐵𝑑⟩ 

|𝜎𝑎𝑢⟩ =
1

√𝑁𝑎

(|1𝑠𝐴𝑢⟩ − |1𝑠𝐵𝑢⟩ 

|𝜎𝑎𝑑⟩ =
1

√𝑁𝑎

(|1𝑠𝐴𝑑⟩ − |1𝑠𝐵𝑑⟩ 

Where, ‘b’, ‘a’ denote bonding and antibonding 

orbitals respectively, Nb and Na are the normalized 

constants. The Slater determinants in occupation 

number basis is: 

|𝜓⟩ = |𝑓𝜎𝑎𝑑
 , 𝑓𝜎𝑎𝑢

 , 𝑓𝜎𝑏𝑑
 , 𝑓𝜎𝑏𝑢

⟩. 

Now, with Jordan-Wigner coding, a quantum circuit 

can be made as given below: 

 

Fig. 1: Quantum circuit corresponding to the Unitary 

Coupled Cluster Operator with single and double 

excitations (UCCSD) acting on the Hartree-Fock wave 

function to yield the optimized ground state of 

hydrogen atom [7].  

The results for the ground state of both H2 and LiF   

obtained by quantum computing are given in Figure 2 

and 3. The graph is plotted by varying the bond length 
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of the molecule, obtaining a minimum ground state 

energy.  

 

0.5 1.0 1.5

-1.14

-1.12

-1.10

-1.08

-1.06

-1.04

-1.02

-1.00

E
n
e
rg

y
 (

H
a
rt

re
e
)

bond length (Angstrom)

 Energy

 

Fig. 2: Energy of the hydrogen molecule as a function of 

inter-atomic distance. At a distance of 0.74 Angstroms, the 

minimum here corresponds to the ground state. 
This is in agreement with the experimentally measured 

value. 
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Fig. 3: Energy of the Lithium hydride molecule as a 

function of inter-atomic distance. At a distance of 1.55 

Angstroms, the minimum here corresponds to the ground 

state. This also is in agreement with the experimentally 

measured value. 

 

6. Conclusion 
Here we have presented an introduction to the subject of 

quantum computing applied to the understanding of simple 

molecules like hydrogen and lithium hydride. Once 

understood, the method can be extended to more complex 

molecules. It is believed that by 2035, all computational 

chemistry will have essential subroutines based on 

quantum algorithms [8]. It is indeed going to be a ‘quantum 

leap’ in science and technology. 
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