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Abstract 

This paper presents an overview of our research activity in the field of free convection in non-

Newtonian fluids from variously shaped heated objects. In particular, consideration is given to 

two broad classes of fluids, namely, power-law fluids (shear-thinning and shear-thickening type) 

and Bingham plastic fluids. We have sought numerical solutions to the coupled momentum and 

energy equations within the framework of Boussinesq approximation to capture the temperature-

dependence of the liquid density; all other thermo-physical properties are, however, assumed to 

be independent of temperature within the narrow range of temperature differences imposed in the 

system. The present results span wide ranges of Grashof number, Prandtl number and power- law 

index for a range of shapes including a sphere, a horizontal cylinder, elliptic cylinders of various 

cross-sections, a semi-circular cylinder and a square bar  maintained at a constant temperature 

which is greater than that of the surrounding liquid. Extensive results on isotherm contours and 

streamline patterns and on Nusselt number are presented to delineate its scaling with Grashof 

number, Prandtl number and power- law index. Finally the present results are shown to be in 

good agreement with the scant experimental results available in this field. The paper is 

concluded by elucidating the role of shape and orientation of the heated object on free 

convection. The universal appeal of a composite parameter, akin to the Rayleigh number, in 

correlating the Nusselt number results for a wide variety of 2-D axisymmetric shapes is 

demonstrated. Finally, additional challenges posed by the Bingham plastic fluids are briefly 

discussed by way of free convection from a heated cylinder submerged in quiescent Bingham 

plastic fluids. 
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1. Introduction 

Whenever there exists a temperature gradient in a fluid, heat transfer occurs by conduction and 

convection from the region of high temperature to that of low temperature. In the absence of a 

mechanical device to facilitate fluid motion, temperature-dependent density of the fluid gives 

rise to the buoyancy-induced flow which, in turn, transfers heat by the so-called free convection. 

Conversely, this contribution, howsoever small, is always present in most heat transfer 

applications. Of course, as the strength of the forced convection diminishes (indicated by 

vanishingly small values of the corresponding Reynolds number, Re), the contribution of free 

convection progressively increases. The relative importance of the free and forced convection 

mechanisms is quantified in terms of the familiar Richardson number, Ri, which is defined as, Ri 

= Gr/Re2. Here, the Grashof number is a measure of the strength of the buoyancy- induced flow 

and the Reynolds number is that of the forced convection. Naturally, the pure forced convection 

limit is characterized by Ri = 0 (Gr = 0) whereas Riĺ∞ corresponds to the pure free convection 

limit (Re = 0). Suffice it to add here that Ri~O(1) corresponds to the conditions when the 

buoyancy- induced velocity is comparable to the imposed velocity. Thus, the contribution of the 

free convection to the overall heat transfer increases with the increasing value of the Richardson 

number. Notwithstanding the fact that free convection is always present, typical examples 

include heat losses from pipes carrying hot process streams like steam or water, storage tanks, 

high-temperature process equipment like distillation columns, reactors, etc., all of which are 

exposed to ambient conditions. In addition to such overwhelming pragmatic significance of free 

convection, the momentum and energy equations are coupled via the body force term and 

therefore the study of buoyancy- induced transport also constitutes an important sub-class of 

problems within the realm of transport phenomena. Consequently, over the years, much progress 

has been made in this field as far as the free convection transport in simple Newtonian fluids like 

air and water is concerned for most geometric configurations of practical interest. Excellent 

treatises are available on this subject (Martynenko and Kharmastov, 2005). 

In contrast, it is readily conceded that most fluids of macromolecular (polymeric melts and 

solutions, protein solutions) and of multiphase nature (foams, emulsions, suspensions, for 

instance) encountered in a broad spectrum of industrial settings including polymer, food, 

pharmaceutical, personal and health care products, lubricants like grease, drilling muds, 
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In eq. 2(a), 0  is the so-called yield stress and B  is the Bingham plastic viscosity. Whether the 

true yield stress exists or not  has been a matter of debate (Barnes, 1999), the flow behaviour of 

many practical materials is conveniently approximated by eq. 2, Intuitively, it appears, with these 

fluids, convection will dominate the fluid- like regions whereas the unyielded (solid- like) regions 

permit heat transfer only by conduction thereby lowering the overall rate of heat transfer. In this 

talk, we present an overview of our recent work in this field which has been reviewed 

extensively elsewhere (Chhabra, 2011)    

2. Analysis and Dimensional Considerations 

Undoubtedly, the major thrust of research in this field is on the prediction of the heat transfer 

coefficient in a given application where free convection is the sole mechanism of heat transfer. 

From a theoretical standpoint, the momentum and energy equations are coupled via the buoyancy 

term and therefore, these need to be solved simultaneously. This aspect precludes the possibility 

of general rigorous solutions even for Newtonian fluids (Martynenko and Kharmastov, 2005). 

Therefore, early attempts at such analysis of free convection are based on the solution of the 

boundary layer equations which implicitly assume infinitely large values of the Grashof number 

and/or Prandtl number so that the thin boundary layer assumption can be justified as well as the 

curvature effects can be neglected. Admittedly this approach has led to reliable scaling of the 

skin friction and Nusselt number with Grashof and/or Prandtl number, it does not capture the 

wake region. Nor does it help delineate the values of the Grashof number and/or of the Prandtl 

number beyond which this analysis is applicable. Notwithstanding these limitations, this 

approach has been widely used for axisymmetric shapes like sphere, cylinder, spheroids, and of 

course, plane surface, etc. The other limiting case of the vanishingly small values of the Grashof 

number is treated via the asymptotic expansion technique such as that used by Singh and Hasan 

(1983) for a sphere and Nakai and Okazaki (1975) for a cylinder. Therefore, neither of these 

approaches is valid at finite values of the governing parameters (Grashof number and/or Prandtl 

number) and, more importantly, these can be only employed for axisymmetric shapes which are 

free from geometric singularities like a square or a triangular prism. Indeed the results for 

Newtonian fluids based on the numerical solution of the complete momentum and energy 

equations even for regular shapes like a plate or a cylinder or a sphere have been reported during 

the past 25-30 years only (Martynenko and Kharmastov, 2005). Suffice it to say here that based 
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on a combination of the analytical, numerical and experimental studies, reliable methods are now 

available for the estimation of skin friction and Nusselt number in the free convection regime 

over most ranges of practical interest in Newtonian fluids, at least for the regular shapes of 

spheres, cylinders or plates. 

For a given geometric configuration, most of these results are expressed by the following generic 

form: 

( , )Nu f Gr Pr   …….. (3) 

Where the general definition of Nusselt number, Nu = hd/k. Here h is the convective heat transfer 

coefficient, d is a characteristics linear dimension like diameter or radius for sphere and cylinder 

and k is the thermal conductivity of the fluid. Similarly, the Grashof number (Gr) and Prandtl 

number for a Newtonian medium are defined as:    
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where ɏ  is the fluid density; g is acceleration due to gravity; Ⱦ  is the coefficient of expansion 

and οT is the temperature difference between the ambient fluid and the heated object; ρ is the 

Newtonian viscosity; Cp is the thermal heat capacity. 

The actual functional relationship embodied in eq. (3) depends upon many other aspects 

including the nature of the boundary condition prescribed on the surface of the heated object 

(constant temperature or constant heat flux), laminar or turbulent flow conditions, viscous 

dissipation, temperature-dependence of the physical properties, etc. Extensive compilations 

encompassing wide ranging shapes and conditions are available in the literature (Martynenko 

and Kharmastov, 2005). 

The analogous literature for power- law fluids is neither as extensive nor coherent as that for 

Newtonian fluids (Shenoy and Mashelkar, 1982; Chhabra, 2006). Early pioneering effort in this 

field is due to Acrivos (1960) who presented limited results for the laminar free convection in 
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power- law fluids from axisymmetric shapes including the case of a sphere, a cylinder and a 

plate. Subsequently, this work has been confirmed by the other studies (Stewart, 1971; Meissner 

et al., 1994). However, as noted previously, such an analysis neither accounts for the wake 

region nor is applicable at finite values of the Grashof and Prandtl numbers. Therefore, one must 

resort to the numerical solutions of the complete momentum and energy equations to circumvent 

these limitations. 

During the past five years or so, reliable numerical predictions of the detailed kinematics of flow 

(streamline and isotherm contours), distribution of Nusselt number along the surface o f heated 

objects and the overall mean Nusselt number have been reported for power- law fluids. 

Prahashanna and Chhabra (2010, 2011) studied laminar natural convection from an isothermal 

sphere and cylinder over wide ranges of power- law index (n) and Grashof and Prandtl numbers. 

Subsequently, analogous results have been reported for elliptical cylinders (Sasmal and Chhabra, 

2012b), square and rotated square cylinders (Sasmal and Chhabra, 2011, 2012a) and semi-

circular cylinders in different configurations (Chandra and Chhabra, 2012; Tiwari and Chhabra, 

2013). This paper provides an overview of our work in this field.  

Dimensional considerations as applied to the appropriate momentum and energy equations 

together with the relevant boundary conditions lead to the following definitions of the Grashof 

number and present emerge power- law fluids 
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Note that much more unwieldy forms of the Grashof and Prandtl numbers for power-law fluids, 

albeit these do reduce to their limiting forms, as given in eq. (4) and eq. (5) for n = 1. In addition, 

the power- law index, n, is a dimensionless parameter in its own right. Thus, for a power- law 

fluid, the functional relationship denoted by eq. (3) is reformulated as follows: 

1( , , )p pNu f Gr Pr n   ……….(8) 
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Both the experimental and numerical approaches have been used to establish the functional 

relationship implicit in eq. (8) using Grp, Prp and n. However, our recent experience suggests 

that the following composite parameter, Ω, is rather more effective in consolidating the results 

for a range of geometric shapes studied thus far than the Grashof number and Prandtl number. It 

is defined as: 

1

2( 1) 3 1

n
n n

p pGr Pr     ……….. (9)  

For n = 1 (Newtonian fluids), the composite parameter, Ω, is identical to the Ra1/4  where the so-

called Rayleigh number, Ra,  is defined asRa Gr Pr  . The available experimental and 

numerical results for laminar free convection in Newtonian fluids conform to 1/4Nu Ra , i.e., 

Nu . By analogy, one can thus re-cast the relationship of eq. (8) as follows: 

bNu a     ………(10)  

Naturally, eq. (10) is applicable for a fixed geometric configuration. Indeed, Table 1 presents a 

summary of the currently available results on laminar free convection in power- law fluids 

thereby showing the universal appeal of the composite parameter. 

Broadly speaking, all else being equal, shear-thinning fluid behaviour (n < 1) promotes heat 

transfer over and above that seen in Newtonian media. Of course, shear-thickening behaviour 

impedes it. Indeed, it is possible to realize up to 100% augmentation in Nusselt number in shear-

thinning fluid under appropriate conditions. Also, the fact that b ≈ 1 in almost all cases 

summarized in Table 1 demonstrates the universal appeal of the composite parameter, Ω, at least 

in conformity with the scaling suggested by the boundary layer considerations. The effect of 

geometry reflected by the value of a  is seen to be significant. Before closing this sub-section, it 

is important to reiterate here the assumptions inherent in the numerical studies which form the 

basis of the results reported in Table 1. Firstly, these results are based on the assumption of 

constant physical properties and negligible viscous dissipation effects thereby limiting their 

validity to the situations wherein ∆T is not excessive and one can thus evaluate k, Cp, m, n etc. at 

the mean film temperature. Secondly, only the results corresponding to the constant wall 

temperature conditions are included in Table 1. Lastly, the flow is assumed to be laminar in all 

cases. 
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Intuitively, it appears that with the increasing value of the yield stress, i.e., the Bingham number, 

the flow domain is increasingly dotted by the unyielded (solid- like) regions where heat transfer 

occurs only by conduction. This point is illustrated by showing some results from a heated 

circular cylinder which is submerged in a body of Bingham plastic fluid (at a lower temperature 

than the cylinder) filled in a square duct whose walls are also at the same temperature as the fluid  

(Fig. 1). These results have been recently reported by Sairamu et al. (2013). Figure 2 shows 

typical results on the so-called yielded and unyielded (shaded) regions. Evidently, there are 

regions which act like a solid material and this has an adverse influence on the overall heat 

transfer. Fig. 3 shows that beyond a limiting value of the Bingham number (Bnmax), the Nusselt 

number is constant which is identical to the corresponding conduction limit (Sairamu et al., 

2013).  

 
     Figure 1: Schemat ics of the flow configuration                Figure 2: Typical structure of yield/un-yielded regions 
 
 
In this case, it is naturally advantageous to correlate the Nusselt number results by two 

expressions. Thus, for instance, Sairamu et al. (2013) reported the following equations: 

2.585                     for maxNu Bn Bn   ….(12a) 

1/4 2.32.585 0.0095 ( )maxNu Ra Bn Bn   …………(12b) 
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Thus, heat transfer in such fluids not only tends to be inherently poor, but its prediction also 

necessitates knowledge about the value of  Bnmax a priori. Indeed, Bnmax shows an intricate 

dependence not only on the geometrical configuration but also on the type of boundary 

conditions as well as on the range of Rayleigh numbers of interest.  

 

 

Figure 3: Dependence of average Nusselt number with Bingham number and Rayleigh number. 

3. Concluding Remarks  

In this work, an attempt has been made to provide an overview of the nature of buoyancy-

induced free convection in two types of non-Newtonian fluids, namely, power-law fluids and 

Bingham plastic fluids. Reliable results available in this field are not only rather scant but these 

are also of very recent vintage. Broadly, shear-thinning and shear-thickening fluids behave in a 

qualitatively similar fashion as Newtonian fluids. However, shear-thinning behaviour can 

enhance the rate of heat transfer by up to 100% under appropriate conditions whereas the shear-

thickening fluid behaviour somewhat impedes the rate of heat transfer. Analogous buoyancy-

induced flow in yield stress fluids has been studied even less extensively and the field is still in 

its infancy. In this case also, there are parts of region which are dominated by conduction thereby 

lowering the overall rate of heat transfer. This rugged terrain of non-Newtonian transport 

phenomena deserves more attention that it has received thus far. 
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