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Abstract

This paper presents an overview of our research activitiig field of free convection in non-
Newtonian fluids from variously shaped heated objects. Iticpdar, consideration is given to
two broad classes of fluids, namely, power-law fluids (shear-tignand shear-thickening type)
and Bingham plastic fluids. We have sought numerical solutmiise coupled momentum and
energy equations within the framework of Boussinesq approximetioapture the temperature-
dependence of the liquid density; all other thermo-physical piepeare, however, assumed to
be independent of temperature within the narrow range of tatope differences imposed in the
system. The present results span wide ranges of Grashof numimelt| Ruenber and power- law
index for a range of shapes including a sphere, a horizontal cylelietic cylinders of various
cross-sections, a semi-circular cylinder and a squareni@intained at a constant temperature
which is greater than that of the surrounding liquid. Bsiee results on isotherm contours and
streamline patterns and on Nusselt number are presentedneatkelits scaling with Grashof
number, Prandtl number and power-law index. Finally the preseuitsese shown to be in
good agreement with the scant experimental results alailm this field. The paper is
concluded by elucidating the role of shape and orientationhef heated object on free
convection. The universal appeal of a composite parameter,t@akthe Rayleigh number, in
correlating the Nusselt number results for a wide variety2-@d axisymmetric shapes is
demonstrated. Finally, additional challenges posed by thghBm plastic fluids are briefly

discussed by way of free convection from a heated cylisdemerged in quiescent Bingham
plastic fluids.
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1. Introduction

Whenever there exists a temperature gradient in a fheik, transfer occurs by conduction and
convection from the region of high temperature to thabwftemperature. In the absence of a
mechanical device to facilitate fluid motion, temperature-déget density of the fluid gives
rise to the buoyancy-induced flow which, in turn, transfers lgdhe so-called free convection.
Conversely, this contribution, howsoever small, is alwayssgmt in most heat transfer
applications. Of course, as the strength of the forced ctomediminishes (indicated by
vanishingly small values of the corresponding Reynolds nuni®e&y,the contribution of free
convection progressively increases. The relative impogtafiche free and forced convection
mechanismss quantified in terms of the familiar Richardson numberwRiich is defined as, Ri
= Gr/Re. Here, the Grashof number is a measure of the strengte dfuoyancy-induced flow
and the Reynolds number is that of the forced convectioturdly, the pure forced convection
limit is characterized by Ri = @5 = 0) whereasi— o corresponds to the pure free convection
limit (Re = 0). Suffice it to add here tha&i~O(1) corresponds to the conditions when the
buoyancy-induced velocity is comparable to the imposeatitgl Thus, the contribution of the
free convection to the overall heat transfer increassthe increasing value of the Richardson
number. Notwithstanding the fact that free convectiomhgays present, typical examples
include heat losses from pipes carrying hot process stréleansteam or water, storage tanks,
high-temperature process equipment like distillation calnreactors, etc., all of which are
exposed to ambient conditions. In addition to such ovedmihg pragmatic significance of free
convection, the momentum and energy equations are cousethe body force term and
therefore the study of buoyancy-induced transport adstst¢utes an important sub-class of
problems within the realm of transport phenomena. Consequentlhythrevgears, much progress
has been made in this field as far as the free convectioptrams simple Newtonian fluids like
air and water is concerned fomost geometric configurations of practical interest. Heewl

treatises are available on this subject (Martynenko and KksnmaE0035.

In contrast, it is readily conceded that most fluids otnmanolecular (polymeric melts and
solutions, protein solutions) and of multiphase natdoan(s, emulsions, suspensions, for
instance) encountered in a broad spectrum of industrial setimuyeding polymer, food,

pharmaceutical, personal and health care products, lubridiketsgrease, driling muds,
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biological fluids do not conform to the simple Newtonian postulate. Instead, such "structured”
fluids exhibit a range of rheological complexities including shear-thinning and shear-thickening
viscosity, yield stress, visco-elasticity, thixotropy, etc. (Chhabra, 2006; Chhabra and Richardson,
2008). Naturally, it is not possible to consider all these aspects simultaneously and, in order to
keep the level of complexity at a tractable level, it seems reasonable to begin with the simplest
and possibly also the commonest type of non-Newtonian aspect, namely, shear-thinning and
shear-thickening fluid behaviour which is usually approximated by the simple two-parameter

power-law model which is written, in simple shear flow, as follows:

Ineq. (1), 718 the shear stress produced in the fluid when it is sheared at the rate of shear, y. The

pre-factor, m, is known as the consistency index and it is a measure of the fluid consistency.

Conversely, it can be viewed as the value of the fluid viscosity at a shear rate of =1s"'. The

index, n, is known as the power-law index. Evidently, n <1 indicates shear-thinning behaviour
whereas n>1 corresponds to the so-called shear-thickening behaviour. Of course, n = 1 denotes
the standard Newtonian fluid behaviour. From a practical standpoint, many polymeric fluids and
suspensions exhibit values of the power-law index in the range ~0.2 < n < 0.6. On the other
hand, thick pastes and suspensions (corn flour in water, starch in water, for instance) exhibit
values of n > 1thereby leading to shear-thickening behaviour. So the major thrust of this work is
on studying the laminar free convection from variously shaped heated objects in quiescent

power-law media.

Next, we provide a brief introduction to the additional challenges posed by the so-called yield-
stress fluids which exhibit elastic solid-like behavior below a threshold stress level (yield stress)
and hence the flow domain is spanned by fluid-like and solid-like zones (Bird et al., 1983;
Barnes, 1999). The simplest viscosity model to capture the yield-stress behaviour is the so-called

Bingham plastic model which, in simple shear, can be written as:
=1+ 1y (7) for || >|z,| ... (2a)

7=0 for |z] <|z,| ... (2b)

129 | Bom. Tech., 62-63, 2012-13.



Distinguished Lecture: Free Convection in
Non-Newtonian Fluids from Heated Objects BOMBAY TECHNOLOGIST

In eq. 2(a), z, is the so-called yield stress apd is the Bingham plastic viscosity. Whether the

true yield stress exists or not has been a matter ofedéBatnes, 1999), the flow behaviour of
many practical materials is conveniently approximated by eq. 2, Wetlyitit appears, with these
fluids, convection will dominate the fluid- like regions whesehe unyielded (solid-like) regions
permit heat transfer only by conduction thereby lowetinggoverall rate of heat transfer. In this
talk, we present an overview of our recent work in thiddfiewhich has been reviewed

extensively elsewhere (Chhabra, 2011)

2. Analysis and Dimensional Considerations

Undoubtedly, the major thrust of research in this fieldristhe prediction of the heat transfer
coefficient in a given application where free convect®ithe sole mechanism of heat transfer.
From a theoretical standpoint, the momentum and energy equatocsupled via the buoyancy
term and therefore, these need to be solved simultanedirsdyaspect precludes the possibility
of general rigorous solutions even for Newtonian fluiaigynenko and Kharmastov, 2005).
Therefore, early attempts at such analysis of free @ibveare based on the solution of the
boundary layer equations which implicitly assume infigitatrge values of the Grashof numbe
and/or Prandtl number so that the thin boundary layer assumy#n be justified as well as the
curvature effects can be neglected. Admittedly this approasHhed to reliable scaling of the
skin friction and Nusselt number with Grashof and/or Ptandimber, it does not capture the
wake region. Nor does it help delineate the values of thenGfanumber and/or of the Prandtl
number beyond which this analysis is applicable. Notwithétgndhese limitations, this
approach has been widely used for axisymmetric shapes likeesglylinder, spheroids, and of
course, plane surface, etc. The other limiting case of thehiagig small values of the Grashof
number is treated via the asymptotic expansion technigueasithat used by Singh and Hasan
(1983) for a sphere and Nakai and Okazaki (1975) for a cylindere®re, neither of these
approachess valid at finite values of the governing parameters (By&dsumber and/or Prandtl
number) and, more importantly, these can be only emplaedxisymmetric shapes which are
free from geometric singularities like a square or angdar prism. Indeed the results for
Newtonian fluids based on the numerical solution of theygete momentum and energy
equations even for regular shapes &k#ate or a cylinder or a sphere have been reported during

the past 25-30 years only (Martynenko and Kharmastov, 2005). Stiffceay here that based
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on a combination of the analytical, numerical and experimentdiest reliable methods are now
available for the estimation of skin friction and Nel number in the free convection regime
over most ranges of practical interest in Newtonian fluasleast for the regular shapes of

spheres, cylinders or plates.

For a given geometric configuration, most of these results aressegat by the following generic

form:
Nu= f(Gr,Pr) ... (3)

Where the general definition of Nusselt numidé&r= hd/k. Here h is the convective heat transfer
coefficient, d is a characteristics linear dimension likareter or radius for sphere and cylinder
and k is the thermal conductivity of the fluid. SimilarlpetGrashof number3r) and Prandtl

number for a Newtonian medium are defined as:

ordomn (@)
Y7,
_Cpu
Pr= v )

wherep is the fluid density; g is acceleration due to gravgyis the coefficient of expansion
and AT is the temperature difference between the ambient #lnd the heated objeqt;is the

Newtonian viscosity; gis the thermal heat capacity.

The actual functional relationship embodied in eq. (3) depepds umany other aspects
including the nature of the boundary condition prescribedhensurface of the heated object
(constant temperature or constant heat flux), laminar drukemt flow conditions, viscous

dissipation, temperature-dependence of the physical propeeties Extensive compilations

encompassing wide ranging shapes and conditions are amaitatiie literature (Martynenko

and Kharmastov, 2005

The analogous literature for power-law fluids is neithsrextensive nor coherent as that for
Newtonian fluids (Shenoy and Mashelkar, 1982; Chhabra, 2006). fsangering effort in this
field is due to Acrivos (1960) who presented limited resultsHerlaminar free convection in
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power-law fluids from axisymmetric shapes including the cafsa sphere, a cylinder and a
plate. Subsequently, this work has been confirmed by the atickes (Stewart, 1971; Meissner
et al, 1994). However, as noted previously, such an analg#iser accounts for the wake
region nor is applicablat finite values of the Grashof and Prandtl numbers. Therefore, osie m
resort to the numerical solutions of the complete momentum amndyeequations to circumvent

these limitations.

During the past five years or so, reliable numerical predictionseodé¢tailed kinematics of flow
(streamline and isotherm contours), distribution of Niugsember along the surface of heated
objects and the overall mean Nusselt number have been ceportepower-law fluids.
Prahashanna and Chhabra (2010, 2011) studied laminar naturattiomrom an isothermal
sphere and cylinder over wide ranges of power-law indearfd)Grashof and Prandtl numbers.
Subsequently, analogous results have been reported for allpyiders (Sasmal and Chhabra,
2012b), square and rotated square cylinders (Sasmal and Chhalita,20023% and semi-
circular cylinders in different configurations (Chandra afth&bra, 2012Tiwari and Chhabra,

2013).This paper provides an overview of our work in this field.

Dimensional considerations as applied to the appropriateemmm and energy equations

together with the relevant boundary conditions lead to dliewiing definitions of the Grashof

number and present emerge power-law fluids

S ) C T2

=L S;m (6)
m

_pCy(m () (=) 30

Prp_T(;J (d)**"( dgBA T)2w)

Note that much more unwieldy forms of the Grashof amdhdtt numbers for power-law fluids,
albeit these do reduce to their limiting forms, as given in eq. (4¢qn(b) for n = 1. In addition,
the power-law index, n, is a dimensionless parameter in itsrghih Thus, for a power-law

fluid, the functional relationship denoted by eq. (3) is reforradiasfollows:

Nu= f(Gr,Pr,n ... 8)
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Both the experimental and numerical approaches have bedntasstablish the functional
relationship implicit in eq. (8) usinGrp, Pr, and n. However, our recent experience suggests
that the following composite paramet€y, is rather more effective in consolidating the results
for a range of geometric shapes studied thus far tteGtashof number and Prandtl number. It
is defined as:

1

Q=GrXmppe (9)

14

For n= 1 (Newtonian fluids), the composite parameter, €, is identical to the Ra"* where the so-

called Rayleigh numbeRa, is defined afa= Gr- P1. The available experimental and
numerical results for laminar free convection in Newtorfiaidls conform to Nu o« Ra&’*, i.e.,

Nu oc Q. By analogy, one can thus re-cast the relationship of eq. (8) as bllows

Nu=a®> .. (10)

Naturally, eq. (10) is applicable for a fixed geometriof@uration. Indeed, Table 1 presents a
summary of the currently available results on lamirrae fconvection in power-law fluids

thereby showing the universal appeal of the composite parameter.

Broadly speaking, all else being equal, shear-thinning fluid \belnra(n < 1) promotes heat
transfer over and above that seen in Newtonian mediao@fte, shear-thickening behaviour

impedes it. Indeed, it is possible to realize up to 100% augmentatiausge Nl number in shear-

thinning fluid under appropriate conditions. Also, the fact tRat 1 in almost all cases
summarized in Table 1 demonstrates the atsdV appeal of the composite parameter, €, at least

in conformity with the scaling suggested by the boundaryr lag@esiderations. The effect of
geometry reflected by the value ofia seen to be significant. Before closing this sub-section, i
is important to reiterate here the assumptions inherettitei numerical studies which form the
basis of the results reported in Table 1. Firstly, theselts are based on the assumption of
constant physical properties and negligible viscous dissipaffects thereby limiting their
validity to the situations wherein AT is not excessive and one can thus evaluatg,knCn etc. at
the mean film temperature. Secondly, only the results comdspp to the constant wall
temperature conditions are included in Table 1. Lastlyflthve is assumed to be laminar in all

cases.
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Table 1: Values of @ andb in Eq. (10) for different shapes.

Linear
Reference Shape . . a b
dimension
Prhashanna & Chhabra
Sphere R 2.00 0.72
(2010)
Prhashanna & Chhabra Horizontal circular
d 1.19 0.89
(2011) cylinder
Elliptic cylinder (
Sasmal & Chhabra (2012b) 2a 0.83 0.89
0.2<E<5)
Chandra and Chhabra Semi-circular cylinder
d 0.93 0.79
(2012) (flat base upward)

Semi-circular cylinder
Tiwari and Chhabra, (2013) d 0.72 0.90
(flat base downward)

Sasmal & Chhabra (2011) Square cylinder 0.60 0.92
B
Tilted square cylinder  ( _
Sasmal & Chhabra (2012a) 0.76 0.92
a=45") B

Next, we turn our attention briefly to the case of free convection in Bingham plastic fluids where
the fluid behaviour is characterized in terms of a yield stress (7p) and plastic viscosity (ug), as
suggested by eq. 2. Since once the prevailing stress level exceeds the yield stress, 7, such a
material behaves like a Newtonian fluid with viscosity gz, one can use the same definitions of
the Grashof number and Prandtl number, as that given by eq. (4) and eq. (5) for Newtonian
fluids, or one can work in terms of the Rayleigh number, Ra =Gr -Pr. However, an additional
dimensionless group, namely a Bingham number emerges in this case. For free convection, it is

defined as:
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Intuitively, it appears that with the increasing value of thedysdless, i.e., the Bingham number,
the flow domain is increasingly dotted by the unyielded (sokd}Iregions where heat transfer
occurs only by conduction. This point is illustrated by showsoge results from a heated
circular cylinder which is submerged in a body of Binghamtjgldkiid (at a lower temperature
than the cylinder) filled in a square duct whose walls are adeaame temperature as the fluid
(Fig. 1). These results have been recently reported baraiet al. (2013). Figure 2 shows
typical results on the so-called yielded and unyielded (shadgi)ns. Evidently, there are
regions which act like a solid material and this has @werse influence on the overall heat
transfer. Fig. 3 shows that beyond a limiting value of timglBam numberBnmay), the Nusselt
number is constant which is identical to the correspandionduction limit (Sairamu et al.,
2013).
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Figure 1: Schematics of the flow configuration Figure 2: Typical structure of yield/yielded regions

In this case, it is naturally advantageous to correthee Nusselt number results by two

expressions. Thus, for instance, Sairamu et al. (2013) reported theirigllequations:

Nu=2.585 f@n> Br, ....(12a)

Nu = 2.585+ 0.00984"* Bn, .~ Bnd)°............ (12b)
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Thus, heat transfer in such fluids not only tends to be intlgrpoor, but its prediction also
necessitates knowledge about the value Bhmax a priori. Indeed,Bnmax shows an intricate

dependence not only on the geometrical configuration but asdhe type of boundary

conditions as well as on the range of Rayleigh numbers of interest.
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Figure 3: Dependence of average Nusselt numberBitithham number and Rayleigh number.

3. Concluding Remarks

In this work, an attempt has been made to provide an overvieleomnature of buoyancy-
induced free convection in two types of non-Newtoniaidéu namely, power-law fluids and
Bingham plastic fluids. Reliable results available in fié&l are not only rather scant but these
are also of very recent vintage. Broadly, shear-thinning &edrghickening fluids behave in a
gualitatively similar fashion as Newtonian fluids. Howeveshear-thinning behaviour can
enhance the rate of heat transfer by up to 100% under apieopoinditions whereas the shear-
thickening fluid behaviour somewhat impedes the rate of heasfar. Analogous buoyancy-
induced flow in yield stress fluids has been studied exen dxtensively and the field is still in
its infancy. In this case also, there are parts of region whicthcaminated by conduction thereby
lowering the overall rate of heat transfer. This ruggedaierof non-Newtonian transport

phenomena deserves more attention that it has receivedhthu
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