A Review of Protective and Decorative Coatings on Polyester Fabrics

Rohan Borse

Final Year Bachelor of Technology, Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra

Jainam Shah

Final Year Bachelor of Technology, Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra

Aarti More

Assistant Professor, Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra

DOI: https://doi.org/10.36664/bt/2023/v70i1/173194

Keywords: No keywords


Fabrics are widely used in non-clothing applications such as construction, transportation, healthcare,
electronics, sports, etc. Due to its remarkable mechanical qualities, including high tensile strength, abrasion
resistance, and dimensional stability, polyester textiles are frequently employed in a variety of applications.
Unfortunately, they are prone to poor breathability, water resistance, and other functional issues. In order
to address these issues and improve the functional performance of polyester textiles, coating technologies
have been developed. By adding new functional groups, nanostructures, or chemical treatments, coatings
have the power to change the attributes of surfaces, enhancing things like water repellency, breathability,
antibacterial activity, UV resistance, and other desirable qualities. The aesthetic appeal of polyester
materials may also be enhanced by coatings by adding distinctive colour, texture, and print patterns.
Protective coatings can help to increase the resilience of polyester textiles to various environmental
conditions. Decorative coatings can be used to give polyester fabrics an aesthetically appealing surface
finish. The purpose of thisreview isto offer a comprehensive overview of modern protective and decorative
coatings for polyester fabrics. This review explores the benefits and downsides of each coating and assesses
their impact on the physical and mechanical attributes of polyester textiles, such as colourfastness, tensile
strength, and wear resistance. Overall, it has been determined that additional study is required to
investigate the different uses that polyester textiles may serve.


Download data is not yet available.


(1) Tian, M.; Hu, X.; Qu, L.; Du, M.; Zhu, S.; Sun, Y.; Han, G. Ultraviolet Protection Cotton Fabric Achieved via Layer-by-Layer Self-Assembly of Graphene Oxide and Chitosan. Appl Surf Sci 2016, 377, 141–148. https://doi.org/10.1016/j.apsusc.2016.03.18 3.

(2) Tian, M.; Hu, X.; Qu, L.; Zhu, S.; Sun, Y.; Han, G. Versatile and Ductile Cotton Fabric Achieved via Layer-by-Layer Self- Assembly by Consecutive Adsorption of Graphene Doped PEDOT: PSS and Chitosan. Carbon N Y 2016, 96, 1166–1174. https://doi.org/10.1016/j.carbon.2015.10.08 0.

(3) Pant, H. R.; Bajgai, M. P.; Nam, K. T.; Seo, Y. A.; Pandeya, D. R.; Hong, S. T.; Kim, H. Y. Electrospun Nylon-6 Spider-Net like Nanofiber Mat Containing TiO2 Nanoparticles: A Multifunctional Nanocomposite Textile Material. J Hazard Mater 2011, 185 (1), 124–130. https://doi.org/10.1016/j.jhazmat.2010.09.0 06. (4) Chang, W.; Xu, F.; Mu, X.; Ji, L.; Ma, G.; Nie, J. Fabrication of Nanostructured Hollow TiO2 Nanofibers with Enhanced Photocatalytic Activity by Coaxial Electrospinning. Mater Res Bull 2013, 48 (7), 2661–2668. https://doi.org/10.1016/j.materresbull.2013. 03.035.

(5) Pasta, M.; Hu, L.; la Mantia, F.; Cui, Y. Electrodeposited Gold Nanoparticles on Carbon Nanotube-Textile: Anode Material for Glucose Alkaline Fuel Cells. Electrochem commun 2012, 19 (1), 81–84. https://doi.org/10.1016/j.elecom.2012.03.0 19.

(6) Pongsathit, S.; Chen, S. Y.; Rwei, S. P.; Pattamaprom, C. Eco-Friendly High- Performance Coating for Polyester Fabric. J Appl Polym Sci 2019, 136 (39). https://doi.org/10.1002/app.48002.

(7) Nguyen, T. T. N.; Chen, Y. H.; Chen, M. Y.; Cheng, K. B.; He, J. L. Multifunctional Ti- O Coatings on Polyethylene Terephthalate Fabric Produced by Using Roll-to-Roll High Power Impulse Magnetron Sputtering System. Surf Coat Technol 2017, 324, 249– 256. https://doi.org/10.1016/j.surfcoat.2017.05.0 82.

(8) Murray, J. L. The O-Ti (Oxygen-Titanium) System. Bulletin of Alloy Phase Diagrams 1987, 8 (2), 165.

(9) Alam, M. J.; Cameron, D. C. Preparation and Characterization of TiO 2 Thin Films by Sol-Gel Method; 2002; Vol. 25.

(10) Fan, X.; Feng, B.; Di, Y.; Lu, X.; Duan, K.; Wang, J.; Weng, J. Preparation of Bioactive TiO Film on Porous Titanium by Micro-Arc Oxidation. Appl Surf Sci 2012, 258 (19), 7584–7588. https://doi.org/10.1016/j.apsusc.2012.04.09 3.

(11) Maruyama, T.; Arai, S. Titanium Dioxide Thin Films Prepared by Chemical Vapor Deposition; 1992; Vol. 26.

(12) Zribi, M.; Kanzari, M.; Rezig, B. Structural, Morphological and Optical Properties of Thermal Annealed TiO Thin Films. Thin Solid Films 2008, 516 (7), 1476–1479. https://doi.org/10.1016/j.tsf.2007.07.195.

(13) Bally, ́ A R; Hones, P.; Sanjines, R.; Schmid, P. E.; Levy ́ ́, F. Mechanical and Electrical Properties of Fcc TiO Thin Films Prepared by 11x r.f. Reactive Sputtering; 1998; Vol. 108.

(14) Li, Z. G.; Miyake, S.; Makino, M.; Wu, Y. X. Microstructure and Properties of Nanocrystalline Titanium Monoxide Films Synthesized by Inductively Coupled Plasma Assisted Reactive Direct Current Magnetron Sputtering. Appl Surf Sci 2008, 255 (5 PART 1), 2370–2374. https://doi.org/10.1016/j.apsusc.2008.07.10 8.

(15) Twu, M. J.; Chiou, A. H.; Hu, C. C.; Hsu, C. Y.; Kuo, C. G. Properties of TiO2 Films Deposited on Flexible Substrates Using Direct Current Magnetron Sputtering and Using High Power Impulse Magnetron Sputtering. Polym Degrad Stab 2015, 117, 1–7. https://doi.org/10.1016/j.polymdegradstab. 2015.03.010. (16) Qi H. Morphology and Discharge Parameter Dependence of Property and Structure of RF Sputter-Deposited Fluorocarbon Coatings on PET Fibers. SEN’I GAKKAISHI 2003, 59 (9).

(17) Jiang, S. X.; Qin, W. F.; Guo, R. H.; Zhang, L. Surface Functionalization of Nanostructured Silver-Coated Polyester Fabric by Magnetron Sputtering. Surf Coat Technol 2010, 204 (21–22), 3662–3667. https://doi.org/10.1016/j.surfcoat.2010.04.0 42.

(18) S. X. Jiang. Characteristics of Silver-Plated Silk Fabric with Plasma Pre-Treatment. Fibers and Polymers 2009, 10 (6), 791–796.

(19) Jiang, S. Q.; Newton, E.; Yuen, C. W. M.; Kan, C. W. Chemical Silver Plating on Polyester/Cotton Blended Fabric. J Appl Polym Sci 2006, 100 (6), 4383–4387. https://doi.org/10.1002/app.23895.

(20) Wang, H.; Wang, J.; Hong, J.; Wei, Q.; Gao, W.; Zhu, Z. Preparation and Characterization of Silver Nanocomposite Textile. J Coat Technol Res 2007, 4 (1), 101–106. https://doi.org/10.1007/s11998- 007-9001-8.

(21) Perelshtein, I.; Applerot, G.; Perkas, N.; Guibert, G.; Mikhailov, S.; Gedanken, A. Sonochemical Coating of Silver Nanoparticles on Textile Fabrics (Nylon, Polyester and Cotton) and Their Antibacterial Activity. Nanotechnology 2008, 19 (24). https://doi.org/10.1088/0957- 4484/19/24/245705.

(22) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16 (10), 2346–2353. https://doi.org/10.1088/0957- 4484/16/10/059.

(23) Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. Coli as a Model for Gram- Negative Bacteria. J Colloid Interface Sci 2004, 275 (1), 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.

(24) Henglein, A. Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition; 1993; Vol. 97.

(25) Henglein, A. Colloidal Silver Nanoparticles: Photochemical Preparation and Interaction with O 2 , CCl 4 , and Some Metal Ions. Chem. Mat. 1998, 10, 444–450.

(26) Lee, H. J.; Yeo, S. Y.; Jeong, S. H. Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics. Journal of Material Sciences 2003, 38, 2199–2204.

(27) Gedanken, A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrasonics Sonochemistry. Elsevier 2004, pp 47–55. https://doi.org/10.1016/j.ultsonch.2004.01. 037.

(28) Pol, V. G.; Wildermuth, G.; Felsche, J.; Gedanken, A.; Calderon-Moreno, J. Sonochemical Deposition of Au Nanoparticles on Titania and the Significant Decrease in the Melting Point of Gold. J Nanosci Nanotechnol 2005, 5 (6), 975–979. https://doi.org/10.1166/jnn.2005.137.

(29) Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A. Sonochemical Deposition of Silver Nanoparticles on Silica Spheres. Langmuir 2002, 18 (8), 3352–3357. https://doi.org/10.1021/la0155552.

(30) Yuan, X.; Xu, W.; Huang, F.; Chen, D.; Wei, Q. Polyester Fabric Coated with Ag/ZnO Composite Film by Magnetron Sputtering. Appl Surf Sci 2016, 390, 863– 869. https://doi.org/10.1016/j.apsusc.2016.08.16 4.

(31) Wu, F.; Tian, L.; Kanjolia, R.; Singamaneni, S.; Banerjee, P. Plasmonic Metal-to- Semiconductor Switching in Au Nanorod- ZnO Nanocomposite Films. ACS Appl Mater Interfaces 2013, 5 (16), 7693–7697. https://doi.org/10.1021/am402309x.

(32) Chubenko, E. B.; Redko, S. v.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon. Semiconductors 2016, 50 (3), 372–376. https://doi.org/10.1134/S106378261603004 0.

(33) Olekhno, N. A.; Beltukov, Y. M.; Parshin, D. A. A Theory of Spectral Properties of Disordered Metal-Semiconductor Nanocomposites. In Journal of Physics: Conference Series; Institute of Physics Publishing, 2015; Vol. 643. https://doi.org/10.1088/1742- 6596/643/1/012118.

(34) Majumder, S.; Jana, S. K.; Bagani, K.; Satpati, B.; Kumar, S.; Banerjee, S. Fluorescence Resonance Energy Transfer and Surface Plasmon Resonance Induced Enhanced Photoluminescence and Photoconductivity Property of Au-TiO2 Metal-Semiconductor Nanocomposite. Opt Mater (Amst) 2015, 40, 97–101. https://doi.org/10.1016/j.optmat.2014.12.00 1.

(35) Bazant, P.; Kuritka, I.; Munster, L.; Kalina, L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose 2015, 22 (2), 1275–1293. https://doi.org/10.1007/s10570-015-0561-y.

(36) Wang, Y. F.; Yao, J. H.; Jia, G.; Lei, H. Optical Prosperities of Ag-ZnO Composition Nanofilm Synthesized by Chemical Bath Deposition. Acta Phys Pol A 2011, 119 (3).

(37) Thongsuriwong, K.; Amornpitoksuk, P.; Suwanboon, S. Photocatalytic and Antibacterial Activities of Ag-Doped ZnO Thin Films Prepared by a Sol-Gel Dip- Coating Method. J Solgel Sci Technol 2012, 62 (3), 304–312. https://doi.org/10.1007/s10971-012-2725-7.

(38) Lu, W.; Gao, S.; Wang, J. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. Journal of Physical Chemistry C 2008, 112 (43), 16792–16800. https://doi.org/10.1021/jp803654k.

(39) Wang, J.; Fan, X. M.; Zhou, Z. W.; Tian, K. Preparation of Ag Nanoparticles Coated Tetrapod-like ZnO Whisker Photocatalysts Using Photoreduction. Mater Sci Eng B Solid State Mater Adv Technol 2011, 176 (13), 978–983. https://doi.org/10.1016/j.mseb.2011.05.027.

(40) Sánchez Zeferino, R.; Barboza Flores, M.; Pal, U. Photoluminescence and Raman Scattering in Ag-Doped Zno Nanoparticles. J Appl Phys 2011, 109 (1). https://doi.org/10.1063/1.3530631.

(41) Kim, K.; Lee, D. H.; Lee, S. Y.; Jang, G. E.; Kim, J. S. Effect of Ag/Al Co-Doping Method on Optically p-Type ZnO Nanowires Synthesized by Hot-Walled Pulsed Laser Deposition. Nanoscale Res Lett 2012, 7. https://doi.org/10.1186/1556- 276X-7-273.

(42) Yu, H. L.; Wu, Q. X.; Wang, J.; Liu, L. Q.; Zheng, B.; Zhang, C.; Shen, Y. G.; Huang, C. L.; Zhou, B.; Jia, J. R. Simple Fabrication of the Ag-Ag2O-TiO2 Photocatalyst Thin Films on Polyester Fabrics by Magnetron Sputtering and Its Photocatalytic Activity. Appl Surf Sci 2020, 503. https://doi.org/10.1016/j.apsusc.2019.1440 75.

(43) Dastjerdi, R.; Montazer, M. A Review on the Application of Inorganic Nano- Structured Materials in the Modification of Textiles: Focus on Anti-Microbial Properties. Colloids and Surfaces B: Biointerfaces. August 2010, pp 5–18. https://doi.org/10.1016/j.colsurfb.2010.03.0 29.

(44) Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. A Review on Special Wettability Textiles:Theoretical Models, Fabrication Technologies and Multifunctional Applications. J Mater Chem A Mater 2017, 5 (1), 31–55. https://doi.org/10.1039/c6ta07984a.

(45) Bozzi, A.; Yuranova, T.; Guasaquillo, I.; Laub, D.; Kiwi, J. Self-Cleaning of Modified Cotton Textiles by TiO2 at Low Temperatures under Daylight Irradiation. J Photochem Photobiol A Chem 2005, 174 (2), 156–164. https://doi.org/10.1016/j.jphotochem.2005. 03.019.

(46) Cedillo-González, E. I.; Riccò, R.; Montorsi, M.; Montorsi, M.; Falcaro, P.; Siligardi, C. Self-Cleaning Glass Prepared from a Commercial TiO2 Nano-Dispersion and Its Photocatalytic Performance under Common Anthropogenic and Atmospheric Factors. Build Environ 2014, 71, 7–14. https://doi.org/10.1016/j.buildenv.2013.09. 007.

(47) Hidaka, H.; Asai, Y.; Zhao, J.; Nohara, K.; Pelizzetti, E.; Serponeg, N. Photoelectrochemical Decomposition of Surfactants on a TiOflCO Particulate Film Electrode Assembly; 1995; Vol. 99.

(48) Wang, Q.; Wang, X.; Li, X.; Cai, Y.; Wei, Q. Surface Modification of PMMA/O- MMT Composite Microfibers by TiO 2 Coating. Appl Surf Sci 2011, 258 (1), 98– 102. https://doi.org/10.1016/j.apsusc.2011.08.01 3.

(49) Parkin, I. P.; Palgrave, R. G. Self-Cleaning Coatings. Journal of Materials Chemistry. May 7, 2005, pp 1689–1695. https://doi.org/10.1039/b412803f.

(50) Tung, W. S.; Daoud, W. A. Photocatalytic Self-Cleaning Keratins: A Feasibility Study. Acta Biomater 2009, 5 (1), 50–56. https://doi.org/10.1016/j.actbio.2008.08.00 9.

(51) Sproul, W. D.; Graham, M. E.; Wong, M.- S.; Rudnik, P. J. Reactive d.c. Magnetron Sputtering of the Oxides of Ti, Zr, and Hfl; 1997; Vol. 89.

(52) Martin, N.; Baretti, D.; Rousselot, C.; Rauch, J.-Y. The Effect of Bias Power on Some Properties of Titanium and Titanium Oxide Films Prepared by r.f. Magnetron Sputtering; 1998; Vol. 107.

(53) Qi, J.; Xu, X.; Liu, X.; Lau, K. T. Fabrication of Textile Based Conductometric Polyaniline Gas Sensor. Sens Actuators B Chem 2014, 202, 732–740. https://doi.org/10.1016/j.snb.2014.05.138.

(54) Jiang, X.; Tian, X.; Gu, J.; Huang, D.; Yang, Y. Cotton Fabric Coated with Nano TiO 2 - Acrylate Copolymer for Photocatalytic Self- Cleaning by in-Situ Suspension Polymerization. Appl Surf Sci 2011, 257 (20), 8451–8456. https://doi.org/10.1016/j.apsusc.2011.04.12 8.

(55) Xue, C. H.; Chen, J.; Yin, W.; Jia, S. T.; Ma, J. Z. Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles. Appl Surf Sci 2012, 258 (7), 2468–2472. https://doi.org/10.1016/j.apsusc.2011.10.07 4.

(56) Bedeloglu, A.; Demir, A.; Bozkurt, Y.; Sariciftci, N. S. A Flexible Textile Structure Based on Polymeric Photovoltaics Using Transparent Cathode. Synth Met 2009, 159 (19–20), 2043–2048. https://doi.org/10.1016/j.synthmet.2009.07. 019.

(57) Yamashita, T.; Takamatsu, S.; Miyake, K.; Itoh, T. Fabrication and Evaluation of a Conductive Polymer Coated Elastomer Contact Structure for Woven Electronic Textile. Sens Actuators A Phys 2013, 195, 213–218. https://doi.org/10.1016/j.sna.2012.09.002.

(58) Prasad, V.; Arputharaj, A.; Bharimalla, A. K.; Patil, P. G.; Vigneshwaran, N. Durable Multifunctional Finishing of Cotton Fabrics by in Situ Synthesis of Nano-ZnO. Appl Surf Sci 2016, 390, 936–940. https://doi.org/10.1016/j.apsusc.2016.08.15 5.

(59) Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Progress in Materials Science. Elsevier Ltd October 1, 2017, pp 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.0 04.

(60) Novoselov, K. S.; Geim, A. K.; Morozov, S. v.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. v.; Dubonos, S. v.; Firsov, A. A. Two- Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438 (7065), 197–200. https://doi.org/10.1038/nature04233.

(61) Novoselov, K. S.; Geim, A. K.; Morozov, S. v.; Jiang, D.; Zhang, Y.; Dubonos, S. v.; Grigorieva, I. v.; Firsov, A. A. Electric Field in Atomically Thin Carbon Films. Science (1979) 2004, 306 (5696), 666–669. https://doi.org/10.1126/science.1102896.

(62) Li, Y.; Wu, Y.; Ong, B. S. Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. J Am Chem Soc 2005, 127 (10), 3266–3267. https://doi.org/10.1021/ja043425k.

(63) Lee, J. M.; Lee, Y. G.; Kim, D. W.; Oh, C.; Koo, S. M.; Oh, S. G. Facile and Novel Route for Preparation of Silica/Silver Heterogeneous Composite Particles with Hollow Structure. Colloids Surf A Physicochem Eng Asp 2007, 301 (1–3), 48– 54. https://doi.org/10.1016/j.colsurfa.2006.12.0 20.

(64) Ouadil, B.; Cherkaoui, O.; Safi, M.; Zahouily, M. Surface Modification of Knit Polyester Fabric for Mechanical, Electrical and UV Protection Properties by Coating with Graphene Oxide, Graphene and Graphene/Silver Nanocomposites. Appl Surf Sci 2017, 414, 292–302. https://doi.org/10.1016/j.apsusc.2017.04.06 8.

(65) Bech, L.; Meylheuc, T.; Lepoittevin, B.; Roger, P. Chemical Surface Modification of Poly(Ethylene Terephthalate) Fibers by Aminolysis and Grafting of Carbohydrates. J Polym Sci A Polym Chem 2007, 45 (11), 2172–2183. https://doi.org/10.1002/pola.21983.

(66) Poortavasoly, H.; Montazer, M.; Harifi, T. Aminolysis of Polyethylene Terephthalate Surface along with in Situ Synthesis and Stabilizing ZnO Nanoparticles Using Triethanolamine Optimized with Response Surface Methodology. Materials Science and Engineering C 2016, 58, 495–503. https://doi.org/10.1016/j.msec.2015.08.065.

(67) Montazer, M.; Amiri, M. M.; Mohammad Ali Malek, R. In Situ Synthesis and Characterization of Nano ZnO on Wool: Influence of Nano Photo Reactor on Wool Properties. Photochem Photobiol 2013, 89 (5), 1057–1063. https://doi.org/10.1111/php.12090.

(68) Singh, A. Synthesis, Characterization, Electrical and Sensing Properties of ZnO Nanoparticles. In Advanced Powder Technology; 2010; Vol. 21, pp 609–613. https://doi.org/10.1016/j.apt.2010.02.002.

(69) Sugimoto. S. GHz Microwave Absorption of a Fine α-Fe Structure Produced by the Disproportionation of Sm 2Fe 17 in Hydrogen. Journal of Alloys and Compunds 2002, 330 (332), 301–306.

(70) Xiang, J.; Chu, Y.; Zhang, X.; Shen, X. Magnetic and Microwave Absorption Properties of Electrospun Co 0.5 Ni 0.5 Fe 2 O 4 Nanofibers. Appl Surf Sci 2012, 263, 320–325. https://doi.org/10.1016/j.apsusc.2012.09.05 2.

(71) Liu, X.; Zhang, Z.; Wu, Y. Absorption Properties of Carbon Black/Silicon Carbide Microwave Absorbers. Compos B Eng 2011, 42 (2), 326–329. https://doi.org/10.1016/j.compositesb.2010. 11.009.

(72) Aïssa, B.; Tabet, N.; Nedil, M.; Therriault, D.; Rosei, F.; Nechache, R. Electromagnetic Energy Absorption Potential and Microwave Heating Capacity of SiC Thin Films in the 1-16 GHz Frequency Range. Appl Surf Sci 2012, 258 (14), 5482–5485. https://doi.org/10.1016/j.apsusc.2012.02.04 7.

(73) Li, W. P.; Zhu, L. Q.; Gu, J.; Liu, H. C. Microwave Absorption Properties of Fabric Coated Absorbing Material Using Modified Carbonyl Iron Power. Compos B Eng 2011, 42 (4), 626–630. https://doi.org/10.1016/j.compositesb.2011. 02.019.

(74) Qin, H.; Liao, Q.; Zhang, G.; Huang, Y.; Zhang, Y. Microwave Absorption Properties of Carbon Black and Tetrapod- like ZnO Whiskers Composites. Appl Surf Sci 2013, 286, 7–11. https://doi.org/10.1016/j.apsusc.2013.08.07 8.

(75) Dishovsky, N.; Grigorova, M. On the Correlation between Electromagnetic Waves Absorption and Electrical Conductivity of Carbon Black Filled Polyethylenes. Mater Res Bull 2000, 35, 403–409.

(76) Yuping, D.; Guangli, W.; Shuchao, G.; Shuqing, L.; Guojia, M. Study on Microwave Absorbing Properties of Carbonyl-Iron Composite Coating Based on PVC and Al Sheet. Appl Surf Sci 2012, 258 (15), 5746–5752. https://doi.org/10.1016/j.apsusc.2012.02.08 2.

(77) Simayee, M.; Montazer, M. A Protective Polyester Fabric with Magnetic Properties Using Mixture of Carbonyl Iron and Nano Carbon Black along with Aluminium Sputtering. Journal of Industrial Textiles 2018, 47 (5), 674–685. https://doi.org/10.1177/1528083716667261 .

(78) Ibrahim, N. A.; Eid, B. M.; Khalil, H. M.; Almetwally, A. A. A New Approach for Durable Multifunctional Coating of PET Fabric. Appl Surf Sci 2018, 448, 95–103. https://doi.org/10.1016/j.apsusc.2018.04.02 2.

(79) Rani, K. V.; Sarma, B.; Sarma, A. Plasma Sputtering Process of Copper on Polyester/Silk Blended Fabrics for Preparation of Multifunctional Properties. Vacuum 2017, 146, 206–215. https://doi.org/10.1016/j.vacuum.2017.09.0 36.

(80) Jiang, S.; Miao, D.; Li, A.; Guo, R.; Shang, S. Adhesion and Durability of Cu Film on Polyester Fabric Prepared by Finishing Treatment with Polyester-Polyurethane and Aqueous Acrylate. Fibers and Polymers 2016, 17 (9), 1397–1402. https://doi.org/10.1007/s12221-016-6254-9.

(81) Zhang, X.; Miao, D.; Ning, X.; Cai, M.; Tian, Y.; Zhao, H.; Jiang, S. The Stability Study of Copper Sputtered Polyester Fabrics in Synthetic Perspiration. Vacuum 2019, 164, 205–211. https://doi.org/10.1016/j.vacuum.2019.03.0 23.

(82) Ojstršek, A.; Virant, N.; Fox, D.; Krishnan, L.; Cobley, A. The Efficacy of Polymer Coatings for the Protection of Electroless Copper Plated Polyester Fabric. Polymers (Basel) 2020, 12 (6). https://doi.org/10.3390/POLYM12061277.

(83) Prorokova, N. P.; Kumeeva, T. Y.; Kiryukhin, D. P.; Kichigina, G. A.; Kushch, P. P. Coatings Based on Tetrafluoroethylene Telomeres Synthesized in Trimethylchlorosilane for Obtaining Highly Hydrophobic Polyester Fabrics. Prog Org Coat 2020, 139 (December 2019), 105485. https://doi.org/10.1016/j.porgcoat.2019.105 485.

(84) Lai, K.; Sun, R. J.; Chen, M. yu; wu, H.; Zha, an X. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Textile Research Journal 2007, 77 (4), 242–246. https://doi.org/10.1177/0040517507074033 .

(85) Jiang, S. Q.; Newton, E.; Yuen, C. W. M.; Kan, C. W. Chemical Silver Plating on Cotton and Polyester Fabrics and Its Application on Fabric Design. Textile Research Journal 2006, 76 (1), 57–65. https://doi.org/10.1177/0040517506053827 .

(86) Yanovskii, V. P.; Kuzmin, O. S. Vacuum Installation of Magnetron Deposition of Decorative Coatings. 8 (3822), 2–4.

(87) Mitterer, C.; Stri, P. S. H. XUIifACE C 4TINGS Decorative Boride Coatings Based on LaB. Surf Coat Technol 1995, 75, 1020– 1027.

(88) Derflinger, V. H.; Waldhauser, W.; Mitterer, C.; Schmölz, P.; Störi, H. LaB6- Based, Zr-Alloyed, Decorative Hard Coatings. Thin Solid Films 1996, 286 (1–2), 188–195. https://doi.org/10.1016/S0040- 6090(95)08517-3.

(89) Wu, Y.; Zhang, L.; Min, G.; Yu, H.; Gao, B.; Liu, H.; Xing, S.; Pang, T. Surface Functionalization of Nanostructured LaB 6 - Coated Poly Trilobal Fabric by Magnetron Sputtering. Appl Surf Sci 2016, 384, 413– 418. https://doi.org/10.1016/j.apsusc.2016.05.06 2.

(90) Pollini, M.; Russo, M.; Licciulli, A.; Sannino, A.; Maffezzoli, A. Characterization of Antibacterial Silver Coated Yarns. J Mater Sci Mater Med 2009, 20 (11), 2361–2366. https://doi.org/10.1007/s10856-009-3796-z.

(91) Guo, R. H.; Jiang, S. Q.; Yuen, C. W. M.; Ng, M. C. F. An Alternative Process for Electroless Copper Plating on Polyester Fabric. Journal of Materials Science: Materials in Electronics 2009, 20 (1), 33– 38. https://doi.org/10.1007/s10854-008- 9594-4.

(92) Zhang, J.; Tan, J.; Chen, X.; Yin, Y.; Wang, C. High Humidity-Sensitive Discoloration Materials Fabricated with PH Indicator Ingredients. Dyes and Pigments 2021, 195 (August), 109740. https://doi.org/10.1016/j.dyepig.2021.1097 40.

(93) Tadesse, M. G.; Dumitrescu, D.; Loghin, C.; Chen, Y.; Wang, L.; Nierstrasz, V. 3D Printing of NinjaFlex Filament onto PEDOT:PSS-Coated Textile Fabrics for Electroluminescence Applications. J Electron Mater 2018, 47 (3), 2082–2092. https://doi.org/10.1007/s11664-017-6015-6.

(94) Ding, Z.; Li, J.; Xin, W.; Zhu, J.; Luo, Y. Matte Waterborne Polyurethane Fabric Nanocoating with Versatility via Mono- Layered Montmorillonite Nanosheets. Prog Org Coat 2021, 159 (January), 106420. https://doi.org/10.1016/j.porgcoat.2021.106 420.

(95) Akhavan, O.; Azimirad, R.; Safa, S.; Hasani, E. CuO/Cu(OH)2 Hierarchical Nanostructures as Bactericidal Photocatalysts. J Mater Chem 2011, 21 (26), 9634–9640. https://doi.org/10.1039/c0jm04364h.

(96) Wang, Y.; Ghanbaja, J.; Soldera, F.; Migot, S.; Boulet, P.; Horwat, D.; Mücklich, F.; Pierson, J. F. Tuning the Structure and Preferred Orientation in Reactively Sputtered Copper Oxide Thin Films. Appl Surf Sci 2015, 335, 85–91. https://doi.org/10.1016/j.apsusc.2015.02.02 8.

(97) Du, Y.; Gao, X.; Meng, X. Preparation and Characterization of Single-Phased n-Type CuO Film by DC Magnetron Sputtering. Physica B Condens Matter 2019, 560, 37– 40. https://doi.org/10.1016/j.physb.2019.02.03 7.

(98) Huang, M. L.; Cai, Z.; Wu, Y. Z.; Lu, S. G.; Luo, B. S.; Li, Y. H. Metallic Coloration on Polyester Fabric with Sputtered Copper and Copper Oxides Films. Vacuum 2020, 178. https://doi.org/10.1016/j.vacuum.2020.109 489.

(99) Huang, M. L.; Wu, Y. Z.; Liu, Z. K.; Lu, S. G. Metallic Coloration and Multifunctional Preparation on Fabrics via Nitriding Reactive Sputtering with Copper and Titanium Targets. Vacuum 2022, 202. https://doi.org/10.1016/j.vacuum.2022.111 177.

(100) Nosaka, T.; Yoshitake, M.; Okamoto, A.; Ogawa, S.; Nakayama, Y. Copper Nitride Thin ®lms Prepared by Reactive Radio- Frequency Magnetron Sputtering.

(101) Maarouf, M.; Haider, M. B.; Al-Kuhaili, M. F.; Aljaafari, A.; Khan, J. Y. Negative Magnetoresistance in Iron Doped TiN Thin Films Prepared by Reactive Magnetron Sputtering. J Magn Magn Mater 2020, 514. https://doi.org/10.1016/j.jmmm.2020.16723 5.

(102) Lu, G.; Yu, L.; Ju, H.; Zuo, B.; Xu, J. Influence of Nitrogen Content on the Thermal Diffusivity of TiN Films Prepared by Magnetron Sputtering. Surface Engineering 2020, 36 (2), 192–198. https://doi.org/10.1080/02670844.2019.164 6964.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.