A Technical Review of Direct Air Capture using Inorganic Sorbents.

Rohan M. Borse

Second Year Bachelor of Technology, Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra.

Dr. Aarti P. More

Assistant Professor, Department of Polymer and Surface Engineering, Institute of Chemical Technology, Mumbai, Maharashtra

DOI: https://doi.org/10.36664/bt/2022/v69i1/172535

Keywords: Direct Air Capture, CO2 capture, Climate change mitigation technology, inorganic sorbents, Technical Analysis.


Abstract

Spearheaded by the industrial revolution anthropogenic CO2 emission has been on the rise since the 18th century AD. This upsurge in the CO2 concentration has led to the increase in global temperatures and has elicited climate change whose complete repercussions are yet unknown. There is unanimity of the scientific community on the fact that the continuous rise of CO2 has to be subdued in order to curb the global increase of temperature. Reductions in the concentration of the carbon dioxide can be brought about by capture of CO2 emitted by large point sources and CO2 capture directly from the atmosphere. The capture of carbon dioxide is carried out by the help of sorbents that bind to the CO2 and then separating this CO2 by regenerating the sorbent which is again cycled through the same procedure. In this review we shall focus our attention on the inorganic sorbents utilized for direct capture of carbon dioxide from the ambient air. We shall do a comprehensive in-depth study and comparison of the efficacy of different sorbents, their industrial designs while taking a brief look at the limited array of technoeconomic analyses present on Direct Air Capture. However, it is important to note that development must be done to produce newer next generation materials to deploy DAC as a climate change mitigation technology on an industrial scale and to make a move towards achieving net zero emissions.

Downloads

Download data is not yet available.

References

(1) Schloss, M. Planning at the Dawn of the XXI Century: The Ambiguous Road to COP26. Global Journal of Economics and Commerce 2021, 20 (4).

(2) Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Cyclizative Atmospheric CO 2 Fixation by Unsaturated Amines with T-BuOI Leading to Cyclic Carbamates. Organic Letters 2012, 14 (18), 4874–4877. https://doi.org/10.1021/ol302201q.

(3) Samanta, A.; Zhao, A.; Shimizu, G. K. H.; Sarkar, P.; Gupta, R. Post-Combustion CO 2 Capture Using Solid Sorbents: A Review. Industrial and Engineering Chemistry Research. February 1, 2012, pp 1438–1463. https://doi.org/10.1021/ie200686q.

(4) Choi, S.; Gray, M. L.; Jones, C. W. Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture from Ambient Air. ChemSusChem 2011, 4 (5), 628–635. https://doi.org/10.1002/cssc.2010003 55.

(5) Zhao, C.; Guo, Y.; Li, C.; Lu, S. Removal of Low Concentration CO2 at Ambient Temperature Using Several Potassium-Based Sorbents. Applied Energy 2014, 124, 241–247. https://doi.org/10.1016/j.apenergy. 2014.02.054.

(6) Zeman, F. S.; Lackner, K. S. Capturing Carbon Dioxide Directly from the Atmosphere World Resource Review Vol. 16 No.2 CAPTURING CARBON DIOXIDE DIRECTLY FROM THE ATMOSPHERE. World Resource Review 2004, 16 (2), 157–172.

(7) Bandi, A.; Specht, M.; Weimer, T.; Schaber, K. CO, RECYCLING FOR HYDROGEN STORAGE AND TRANSPORTATION-ELECTROCHEMICAL CO2, REMOVAL AND FIXATION. Energy Conversion Mgmt. 1995, 36, 899–902.

(8) Keith, D. W.; Ha-Duong, M.; Stolaroff, J. K. Climate Strategy with CO2 Capture from the Air. Climatic Change 2006, 74 (1–3), 17–45. https://doi.org/10.1007/s10584-005-9 026-x.

(9) Baciocchi, R.; Storti, G.; Mazzotti, M. Process Design and Energy Requirements for the Capture of Carbon Dioxide from Air. Chemical Engineering and Processing: Process Intensification 2006, 45 (12), 1047–1058. https://doi.org/10.1016/j.cep.2006.03. 015.

(10) Mahmoudkhani, M.; Keith, D. W. Low-Energy Sodium Hydroxide Recovery for CO2 Capture from Atmospheric Air-Thermodynamic Analysis. International Journal of Greenhouse Gas Control 2009, 3 (4), 376–384. https://doi.org/10.1016/j.ijggc.2009.0 2.003.

(11) Mahmoudkhani, M.; Heidel, K. R.; Ferreira, J. C.; Keith, D. W.; Cherry, R. S. Low Energy Packed Tower and Caustic Recovery for Direct Capture of CO2 from Air. In Energy Procedia; 2009; Vol. 1, pp 1535–1542. https://doi.org/10.1016/j.egypro.2009. 01.201.

(12) Nikulshina, V.; Gálvez, M. E.; Steinfeld, A. Kinetic Analysis of the Carbonation Reactions for the Capture of CO2 from Air via the Ca(OH)2-CaCO3-CaO Solar Thermochemical Cycle. Chemical Engineering Journal. May 1, 2007, pp 75–83. https://doi.org/10.1016/j.cej.2006.1 1.003.

(13) Nikulshina, V.; Hirsch, D.; Mazzotti, M.; Steinfeld, A. CO2 Capture from Air and Co-Production of H2 via the Ca(OH)2-CaCO3 Cycle Using Concentrated Solar Power-Thermodynamic Analysis. Energy 2006, 31 (12), 1715–1725. https://doi.org/10.1016/j.energy.2005. 09.014.

(14) Nikulshina, V.; Gebald, C.; Steinfeld, A. CO2 Capture from Atmospheric Air via Consecutive CaO-Carbonation and CaCO3-Calcination Cycles in a Fluidized-Bed Solar Reactor. Chemical Engineering Journal 2009, 146 (2), 244–248. https://doi.org/10.1016/j.cej.2008.06. 005.

(15) Nikulshina, V.; Ayesa, N.; Gálvez, M. E.; Steinfeld, A. Feasibility of Na-Based Thermochemical Cycles for the Capture of CO2 from Air-Thermodynamic and Thermogravimetric Analyses. Chemical Engineering Journal 2008, 140 (1–3), 62–70. https://doi.org/10.1016/j.cej.2007.0 9.007.

(16) Stucki, S.; Schuler, A.; Constantinescu, M. COUPLED CO, RECOVERY FROM THE ATMOSPHERE AND WATER ELECTROLYSIS: FEASIBILITY OF A NEW PROCESS FOR HYDROGEN STORAGE; Villigen, 1995; Vol. 20.

(17) Przepiórski, J.; Czyzewski, A.; Pietrzak, R.; Morawski, A. W. MgO/CaO-Loaded Activated Carbon for Carbon Dioxide Capture: Practical Aspects of Use. Industrial and Engineering Chemistry Research 2013, 52 (20), 6669–6677. https://doi.org/10.1021/ie302848r.

(18) Veselovskaya, J. v.; Derevschikov, V. S.; Kardash, T. Y.; Stonkus, O. A.; Trubitsina, T. A.; Okunev, A. G. Direct CO2 Capture from Ambient Air Using K2CO3/Al2O3 Composite Sorbent. International Journal of Greenhouse Gas Control 2013, 17, 332–340. https://doi.org/10.1016/j.ijggc.2013 .05.006.

(19) Bali, S.; Sakwa-Novak, M. A.; Jones, C. W. Potassium Incorporated Alumina Based CO2 Capture Sorbents: Comparison with Supported Amine Sorbents under Ultra-Dilute Capture Conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 486, 78– 85. https://doi.org/10.1016/j.colsurfa.201 5.09.020.

(20) Choi, S.; Drese, J. H.; Jones, C. W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem. Wiley-VCH Verlag 2009, pp 796–854. https://doi.org/10.1002/cssc.20090 0036.

(21) Derevschikov, V. S.; Veselovskaya, J. v.; Kardash, T. Y.; Trubitsyn, D. A.; Okunev, A. G. Direct CO2 Capture from Ambient Air Using K2CO 3/Y2O3 Composite Sorbent. Fuel 2014, 127, 212– 218. https://doi.org/10.1016/j.fuel.2013.09. 060.

(22) Zhao, C.; Guo, Y.; Li, C.; Lu, S. Carbonation Behavior of K2CO3/AC in Low Reaction Temperature and CO2 Concentration. Chemical Engineering Journal 2014, 254, 524–530. https://doi.org/10.1016/j.cej.2014.05. 062.