Membrane Assisted Edible Oil Deacidification

Harsh Wadhwani

Institute of Chemical Technology, Mumbai

DOI: https://doi.org/10.36664/bt/2022/v69i1/172532

Keywords: Edible Oil, Free fatty acid, Membrane Processes, Green Processes.


Abstract

Although humans started using edible vegetable oils as a part of food, ages ago, there have been considerably lesser improvements in the way they are refined. Chemical and Physical Refining processes are surely the best in terms of the quality of the oil obtained, but they lead to neutral oil loss and higher energy consumption respectively, necessitating the urge to find processes with lower oil losses or energy required, yet giving similar quality oil. These drawbacks are majorly due to the deacidification step, which is a part of the whole refining process. To address this, many researchers and scientists have been working for decades and have found some good alternatives, which carry out decidification in a sustainable and greenway. This article focuses on one such solution i.e., Membrane Assisted Edible Oil Deacidification, which has the potential to be introduced as an alternative for the conventional refining methods.

Downloads

Download data is not yet available.

References

(1) Swern, D.; Bailey, A. D. Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi Fereidoon, Ed.; John Wiley and Sons, 1964; Vol. 1.

(2) CHAPMAN, D. Handbook of Lipid Research, Volume 4: The Physical Chemistry of Lipids. Biochemical Society Transactions 1987, 15 (1), 184–185. https://doi.org/10.1042/bst0150184a.

(3) Peyronel, F. Medium Chain Triacylglycerides. In Encyclopedia of Food Chemistry; Elsevier, 2019; pp 132–137. https://doi.org/10.1016/B978-0-08-100596-5.2 1594-1.

(4) Gunstone, F. D. THE CHEMISTRY OF OILS AND FATS Sources, Composition, Properties and Uses; Blackwell Publishing: Dundee, 2004.

(5) The Extraction of Vegetable Oils. In Fats and Oils Handbook; Elsevier, 1998; pp 345–445. https://doi.org/10.1016/B978-0-9818936-0-0.5 0010-X.

(6) Small Scale Edible Oil Refinery Equipment.

(7) Neutralization Process.

(8) Degumming Process.

(9) Bleaching Process.

(10) Deodorization Process.

(11) M. Victoria Ruíz-Méndez; M. Carmen Dobarganes. Oil Refining. AOCS Lipid Library 2021.

(12) Robert S. Zeldenrust, G. W. S. G. G. G. M. E. Alkali Refining. AOCS Lipid Library.

(13)Nurham Turgut Dunford. Edible Oil Quality; 2016.

(14) Mahesar, S. A.; Sherazi, S. T. H.; Khaskheli, A. R.; Kandhro, A. A.; uddin, S. Analytical Approaches for the Assessment of Free Fatty Acids in Oils and Fats. Anal. Methods 2014, 6 (14), 4956–4963. https://doi.org/10.1039/C4AY00344F.

(15) Aryusuk, K.; Puengtham, J.; Lilitchan, S.; Jeyashoke, N.; Krisnangkura, K. Effects of Crude Rice Bran Oil Components on Alkali-Refining Loss. Journal of the American Oil Chemists’ Society 2008, 85 (5), 475–479. https://doi.org/10.1007/s11746-008-1215-0.

(16) Deacidification and deodorization.

(17) Tandy, D. C.; Mcpherson, W. J. Physical Refining of Edible Oil. Journal of the American Oil Chemists’ Society 1984, 61 (7), 1253–1258. https://doi.org/10.1007/BF02636265.

(18) Chumsantea, S.; Aryusuk, K.; Lilitchan, S.; Jeyashoke, N.; Krisnangkura, K. Reducing Oil Losses in Alkali Refining. Journal of the American Oil Chemists’ Society 2012, 89 (10), 1913–1919. https://doi.org/10.1007/s11746-012-2079-x.

(19) Singh, S.; Singh, R. P. Deacidification of High Free Fatty Acid-Containing Rice Bran Oil by Non Conventional Reesterification Process. Journal of Oleo Science 2009, 58 (2), 53–56. https://doi.org/10.5650/jos.58.53.

(20) Vaisali, C.; Charanyaa, S.; Belur, P. D.; Regupathi, I. Refining of Edible Oils: A Critical Appraisal of Current and Potential Technologies. International Journal of Food Science & Technology 2015, 50 (1), 13–23. https://doi.org/10.1111/ijfs.12657.

(21) CN103060089A.

(22) De, B. K.; Patel, J. D. Refining of Rice Bran Oil by Neutralization with Calcium Hydroxide. European Journal of Lipid Science and Technology 2011, 113 (9), 1161–1167. https://doi.org/10.1002/ejlt.201000343.

(23) de Greyt, W. F. J. Current and Future Technologies for the Sustainable and Cost‐efficient Production of High Quality Food Oils. European Journal of Lipid Science and Technology 2012, 114 (10), 1126– 1139. https://doi.org/10.1002/ejlt.201200068.

(24) Čmolík, J.; Pokorný, J. Physical Refining of Edible Oils. European Journal of Lipid Science and Technology 2000, 102 (7), 472–486. https://doi.org/10.1002/1438-9312(200008)102 :7<472::AID EJLT472>3.0.CO;2-Z.

(25) Lee, A. P.; King. W/G. Edible Oil Deodorizing Equipment and Methods: A Short Historical Sketch. Oil & Soap.; 1937.

(26) Wim De Greyt, R. M. D. B. Z. Belgium. Deodorization. AOCS Lipid Library 2021. (27)Dijkstra, A. J. The Lipid Handbook with CD-ROM, 3rd ed.; Gunstone, F. D., Harwood, J. L., Dijkstra, A. J., Eds.; Taylor and Francis Group LLC, 2007.

(28) Wolf Hamm; Gijs Calliauw; Richard J. Hamilton. Edible Oil Refining: Current and Future Technologies. In: Edible Oil Processing. In Edible Oil Procesing; John Wiley and Sons, 2013; pp 127– 151.

(29) YASUDA, K.; WATANABE, H.; TOKUNAGA, T. Effects of the Deodorization Temperature upon the Quality of Soybean Oil. Journal of Japan Oil Chemists’ Society 1962, 11 (1), 2–5. https://doi.org/10.5650/jos1956.11.2.

(30) JAWAD IM; KOCHHAR SP; HUDSON BJF. THE PHYSICAL REFINING OF EDIBLE OILS. 1. EFFECT ON COMPONENT FATTY ACIDS AND ON TRIGLYCERIDES. LEBENSMITTEL WISSENSCHAFT 1983, 17 (5), 289–293.

(31) de Greyt, W. F.; Kellens, M. J.; Huyghebaert, A. D. Polymeric and Oxidized Triglyceride Content of Crude and Refined Vegetable Oils — An Overview. Lipid / Fett 1997, 99 (8), 287–290. https://doi.org/10.1002/lipi.19970990806.

(32) Dobson, G.; Christie, W. W.; Sébédio, J. L. The Nature of Cyclic Fatty Acids Fored in Heated Vegetable Oils. Grasas y Aceites 1996, 47 (1–2), 26–33. https://doi.org/10.3989/gya.1996.v47.i1-2.839.

(33) BORTOLOMEAZZI, R.; PIZZALE; NOVELLI, A.; CONTE, L. S. Steroidal Hydrocarbons Formed by Dehydration of Oxidized Sterols in Refined Oils. Rivista Italiana delle Sostanze Grasse 1996, 73 (10), 457–460.

(34) Makasci, A.; Arisoy, K.; Telefoncu, A. Deacidification of High Acid Olive Oil by Immobilized Lipase. Academic Journals.

(35) Cho, S. Y.; Kwon, T. W.; Yoon, S. H. Selective Removal of Free Fatty Acids in Oils Using a Microorganism. Journal of the American Oil Chemists’ Society 1990, 67 (9), 558–560. https://doi.org/10.1007/BF02540766.

(36) A. J. C. Andersen. Refining of Oils and Fats for Edible Purposes, 2nd ed.; Elsevier, 1962.

(37)Narayan, A. v.; Barhate, R. S.; Raghavarao, K. S. M. S. Extraction and Purification of Oryzanol from Rice Bran Oil and Rice Bran Oil Soapstock. Journal of the American Oil Chemists’ Society 2006, 83 (8), 663–670. https://doi.org/10.1007/s11746-006-5021-2.

(38) Dunford, N. T.; King, J. W. Thermal Gradient Deacidification of Crude Rice Bran Oil Utilizing Supercritical Carbon Dioxide. Journal of the American Oil Chemists’ Society 2001, 78 (2), 121–125. https://doi.org/10.1007/s11746-001-0231-1.

(39) Christianne E. C. Rodrigues; Goncalves, C. B.; Batista, E.; Antonio J.A. Meirelles. Deacidification of Vegetable Oils by Solvent Extraction. Recent Patents on Engineering 2007, 1 (1), 95–102. https://doi.org/10.2174/187221207779814699.

(40) Pina, C. G.; Meirelles, A. J. A. Deacidification of Corn Oil by Solvent Extraction in a Perforated Rotating Disc Column. Journal of the American Oil Chemists’ Society 2000, 77 (5), 553–559. https://doi.org/10.1007/s11746-000-0088-3.

(41) van Dijck, W. J. G. Alkali Refining and Extractionof Edible Oil. US19422268786, 1942.

(42) Cherukuri, R. S. V.; Cheruvanky, R.; Lynch, I.; McPeak, D. L. FFA Separation from Edible Oil Using Different Solvents. US19995985344, 1999.

(43) O. Özdikicierler. A New Approach in Edible Oil Refining : Minimal Refining Method. Acdemis Food Journal 2016.

(44) Li, D.; Wang, W.; Durrani, R.; Li, X.; Yang, B.; Wang, Y. Simplified Enzymatic Upgrading of High Acid Rice Bran Oil Using Ethanol as a Novel Acyl Acceptor. Journal of Agricultural and Food Chemistry 2016, 64 (35), 6730–6737. https://doi.org/10.1021/acs.jafc.6b02518.

(45) Mulia, K.; Nasikin, M.; Krisanti, E. A.; Zahrina, I. Deacidification of Palm Oil Using Betaine Monohydrate-Carboxylic Acid Deep Eutectic Solvents: Combined Extraction and Simple Solvent Recovery. Processes 2020, 8 (5), 543. https://doi.org/10.3390/pr8050543.

(46) Wang, X.; Wang, X.; Xie, D. A Novel Method for Oil Deacidification: Chemical Amidation with Ethanolamine Catalyzed by Calcium Oxide. LWT 2021, 146, 111436. https://doi.org/10.1016/j.lwt.2021.111436.

(47) Rangaswamy, S.; Kumar, G. S.; Kuppusamy, C. Membrane Technology for Vegetable Oil Processing— Current Status and Future Prospects. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (5), 5015–5042. https://doi.org/10.1111/1541-4337.12825.

(48) Gupta, A.; Bowden, N. B. Separation of Cis -Fatty Acids from Saturated and Trans -Fatty Acids by Nanoporous Polydicyclopentadiene Membranes. ACS Applied Materials & Interfaces 2013, 5 (3), 924– 933. https://doi.org/10.1021/am3025867.

(49) Fornasero, M. L.; Marenchino, R. N.; Pagliero, C. L. Deacidification of Soybean Oil Combining Solvent Extraction and Membrane Technology. Advances in Materials Science and Engineering 2013, 2013, 1– 5. https://doi.org/10.1155/2013/646343.

(50) Membrane Materials: Organic V. Inorganic.

(51) Manjula, S.; Subramanian, R. Membrane Technology in Degumming, Dewaxing, Deacidifying, and Decolorizing Edible Oils. Critical Reviews in Food Science and Nutrition 2006, 46 (7), 569–592. https://doi.org/10.1080/10408390500357746.

(52) de Morais Coutinho, C.; Chiu, M. C.; Basso, R. C.; Ribeiro, A. P. B.; Gonçalves, L. A. G.; Viotto, L. A. State of Art of the Application of Membrane Technology to Vegetable Oils: A Review. Food Research International 2009, 42 (5–6), 536–550. https://doi.org/10.1016/j.foodres.2009.02.010.

(53) Subramanian, R.; Nakajima, M.; Kimura, T.; Maekawa, T. Membrane Process for Premium Quality Expeller-Pressed Vegetable Oils. Food Research International 1998, 31 (8), 587–593. https://doi.org/10.1016/S0963-9969(99)00032- 0.

(54) Koike, S.; Subramanian, R.; Nabetani, H.; Nakajima, M. Separation of Oil Constituents in Organic Solvents Using Polymeric Membranes. Journal of the American Oil Chemists’ Society 2002, 79 (9), 937–942. https://doi.org/10.1007/s11746-002-0582-7.

(55) Bhosle, B. M.; Subramanian, R.; Ebert, K. Deacidification of Model Vegetable Oils Using Polymeric Membranes. European Journal of Lipid Science and Technology 2005, 107 (10), 746–753. https://doi.org/10.1002/ejlt.200501132.

(56) Koike, S.; Subramanian, R.; Nabetani, H.; Nakajima, M. Separation of Oil Constituents in Organic Solvents Using Polymeric Membranes. Journal of the American Oil Chemists’ Society 2002, 79 (9), 937–942. https://doi.org/10.1007/s11746-002-0582-7.

(57) Rama, L. P.; Cheryan, M.; Rajagopalan, N. Solvent Recovery and Partial Deacidification of Vegetable Oils by Membrane Technology. Lipid / Fett 1996, 98 (1), 10–14. https://doi.org/10.1002/lipi.19960980104.

(58) Krishna Kumar, N. S.; Bhowmick, D. N. Separation of Fatty Acids/Triacylglycerol by Membranes. Journal of the American Oil Chemists’ Society 1996, 73 (3), 399–401. https://doi.org/10.1007/BF02523439.

(59) Zwijnenberg, H. J.; Krosse, A. M.; Ebert, K.; Peinemann, K. v.; Cuperus, F. P. Acetone-Stable Nanofiltration Membranes in Deacidifying Vegetable Oil. Journal of the American Oil Chemists’ Society 1999, 76 (1), 83–87. https://doi.org/10.1007/s11746-999-0051-1.

(60) Jala, R. C. R.; Guo, Z.; Xu, X. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing. Journal of the American Oil Chemists’ Society 2011, 88 (7), 1053–1060. https://doi.org/10.1007/s11746-011-1760-9.

(61) sen Gupta, A. K. Refining. US4533501A, August 6, 1985.

(62) Mutoh Y.; Matsuda, K.; Ohshima, M.; Ohuchi, H. Method of Dewaxing a Vegetable Oil. US4545940A, October 8, 1985.

(63) Pioch, D.; Larguèze, C.; Graille, J.; Ajana, H.; Rouviere, J. Towards an Efficient Membrane Based Vegetable Oils Refining. Industrial Crops and Products 1998, 7 (2–3), 83–89. https://doi.org/10.1016/S0926-6690(97)00035- 6.

(64) HAFIDI, A.; PIOCH, D.; AJANA, H. Soft Purification of Lampante Olive Oil by Microfiltration. Food Chemistry 2005, 92 (1), 17–22. https://doi.org/10.1016/j.foodchem.2004.07.01 8.

(65) Roy, B.; Dey, S.; Sahoo, G. C.; Roy, S. N.; Bandyopadhyay, S. Degumming, Dewaxing and Deacidification of Rice Bran Oil-Hexane Miscella Using Ceramic Membrane: Pilot Plant Study. Journal of the American Oil Chemists’ Society 2014, 91 (8), 1453–1460. https://doi.org/10.1007/s11746-014- 2473-7.

(66) Keurentjes, J. T. F.; Sluijs, J. T. M.; Franssen, R. J. H.; Van’t Riet, K. Extraction and Fractionation of Fatty Acids from Oil Using an Ultrafiltration Membrane. Industrial & Engineering Chemistry Research 1992, 31 (2), 581–587. https://doi.org/10.1021/ie00002a020.

(67) Raman, L. P.; Cheryan, M.; Rajagopalan, N. Deacidification of Soybean Oil by Membrane Technology. Journal of the American Oil Chemists’ Society 1996, 73 (2), 219–224. https://doi.org/10.1007/BF02523898.

(68) Kale, V.; Katikaneni, S. P. R.; Cheryan, M. Deacidifying Rice Bran Oil by Solvent Extraction and Membrane Technology. Journal of the American Oil Chemists’ Society 1999, 76 (6), 723–727. https://doi.org/10.1007/s11746-999-0166-4.

(69) Lai, L. L.; Soheili, K. C.; Artz, W. E. Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide. Journal of the American Oil Chemists’ Society 2008, 85 (2), 189–196. https://doi.org/10.1007/s11746-007-1182-x.

(70) Firman, L. R.; Ochoa, N. A.; Marchese, J.; Pagliero, C. L. Deacidification and Solvent Recovery of Soybean Oil by Nanofiltration Membranes. Journal of Membrane Science 2013, 431, 187–196. https://doi.org/10.1016/j.memsci.2012.12.040.

(71) Lai, S. O.; Heng, S. L.; Chong, K. C.; Lau, W. J. DEACIDIFICATION OF PALM OIL USING SOLVENT EXTRACTION INTEGRATED WITH MEMBRANE TECHNOLOGY. Jurnal Teknologi 2016, 78 (12). https://doi.org/10.11113/jt.v78.10069.

Similar Articles

You may also start an advanced similarity search for this article.