A Review on Lumped-Kinetic Modelling Methodologies for an industrial FCCU - riser reactor for catalytic cracking

Shrivatsa Korde

Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai - 400019

Anant Sohale

Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai - 400019

Prithvi Dake

Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai - 400019

DOI: https://doi.org/10.36664/bt/2022/v69i1/172498

Keywords: Catalytic Cracking, Lumped Kinetics, Riser Reactor, Catalyst Regeneration, Fluidised Bed.


Abstract

A comprehensive review of scientific literature on various lumped kinetic models used in modelling Fluidised
Catalytic Cracking Units (FCCU) used in the petrochemical industry has been done, along with a brief introduction
to the working of FCCU. The most popular four lumped kinetic model has been discussed in detail along with the
mathematical model and then solved using MATLAB. The modified form of the model that considers axial
dispersion has also been discussed. The results of the simulation have been plotted and analysed. A brief overview
of three, five, six, seven, nine, and twelve lumped kinetic models has also been discussed.

Downloads

Download data is not yet available.

References

(1) Kasat, R. B.; Ray, A. K.; Gupta, S. K. Applications of Genetic Algorithm in Polymer Science and Engineering. Mater. Manuf. Processes 2003, 18 (3), 523–532. https://doi.org/10.1081/AMP-120022026.

(2) Adams, H. The Education of Henry Adams. William Mary Q 1919, 27 (3), 213. https://doi.org/10.2307/1916213.

(3) Elnashaie, S. S. E. H.; Elshishini, S. S. Modelling, Simulation, and Optimization of Industrial Fixed Bed Catalytic Reactors; Topics in chemical engineering; Gordon and Breach Science Publishers: Yverdon, Switzerland ; Langhorne, Pa, 1993.

(4) Marafi, A.; Albazzaz, H.; Rana, M. S. Hydroprocessing of Heavy Residual Oil: Opportunities and Challenges. Catal Today 2019, 329, 125–134. https://doi.org/10.1016/j.cattod.2018.10.067.

(5) Gary, J. H.; Handwerk, G. E. Petroleum Refining: Technology and Economics, 4th ed.; M. Dekker: New York, 2001.

(6) Sadeghbeigi, R. Fluid Catalytic Cracking Handbook [Recurso Electr??Nico]: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units; Butterworth - Heinemann: Inglaterra, 2012.

(7) Bai, P.; Etim, U. J.; Yan, Z.; Mintova, S.; Zhang, Z.; Zhong, Z.; Gao, X. Fluid Catalytic Cracking Technology: Current Status and Recent Discoveries on Catalyst Contamination. Catal. Rev. Sci. Eng. 2019, 61 (3), 333–405. https://doi.org/10.1080/01614940.2018.1549011 .

(8) Jiménez-García, G.; Aguilar-López, R.; Maya-Yescas, R. The Fluidized-Bed Catalytic Cracking Unit Building Its Future Environment. Fuel 2011, 90 (12), 3531–3541. https://doi.org/10.1016/j.fuel.2011.03.045.

(9) Dagde, K. K. Development of Dispersion Models for the Simulation of Fluid Catalytic Cracking of Vacuum Gas Oil in Riser Reactor. ACES 2018, 08 (04), 298–310. https://doi.org/10.4236/aces.2018.84021.

(10) Springer Handbook of Petroleum Technology, 2nd ed. 2017.; Hsu, C. S., Robinson, P. R., Eds.; Springer Handbooks; Springer International Publishing : Imprint: Springer: Cham, 2017. https://doi.org/10.1007/978-3-319-49347-3.

(11) Stratiev, D.; Shishkova, I.; Ivanov, M.; Dinkov, R.; Georgiev, B.; Argirov, G.; Atanassova, V.; Vassilev, P.; Atanassov, K.; Yordanov, D.; Popov, A.; Padovani, A.; Hartmann, U.; Brandt, S.; Nenov, S.; Sotirov, S.; Sotirova, E. Role of Catalyst in Optimizing Fluid Catalytic Cracking Performance During Cracking of H-Oil-Derived Gas Oils. ACS Omega 2021, 6 (11), 7626–7637. https://doi.org/10.1021/acsomega.0c06207.

(12) SURVEY: Can Asia Go on Absorbing the World’s Crude Oil? Oil Energy Tren. 2017, 42 (11), 12–20. https://doi.org/10.1111/oet.12538.

(13) Meirer, F.; Kalirai, S.; Morris, D.; Soparawalla, S.; Liu, Y.; Mesu, G.; Andrews, J. C.; Weckhuysen, B. M. Life and Death of a Single Catalytic Cracking Particle. Sci. Adv. 2015, 1 (3), e1400199. https://doi.org/10.1126/sciadv.1400199.

(14) Scherzer, J. Designing FCC Catalysts with High-Silica Y Zeolites. Appl. Catal. 1991, 75 (1), 1–32. https://doi.org/10.1016/S0166-9834(00)83119- X.

(15) Chen, Y.-M. Recent Advances in FCC Technology. Powder Technol. 2006, 163 (1–2), 2–8. https://doi.org/10.1016/j.powtec.2006.01.001.

(16) Vogt, E. T. C.; Weckhuysen, B. M. Fluid Catalytic Cracking: Recent Developments on the Grand Old Lady of Zeolite Catalysis. Chem. Soc. Rev. 2015, 44 (20), 7342–7370. https://doi.org/10.1039/C5CS00376H.

(17) Alabdullah, M. A.; Gomez, A. R.; Vittenet, J.; Bendjeriou-Sedjerari, A.; Xu, W.; Abba, I. A.; Gascon, J. A Viewpoint on the Refinery of the Future: Catalyst and Process Challenges. ACS Catal. 2020, 10 (15), 8131–8140. https://doi.org/10.1021/acscatal.0c02209.

(18) Corma, A.; Sauvanaud, L. FCC Testing at Bench Scale: New Units, New Processes, New Feeds. Catal. Today 2013, 218–219, 107–114. https://doi.org/10.1016/j.cattod.2013.03.038.

(19) Chaohe, Y.; Xiaobo, C.; Jinhong, Z.; Chunyi, L.; Honghong, S. Advances of Two-Stage Riser Catalytic Cracking of Heavy Oil for Maximizing Propylene Yield (TMP) Process. Appl. Petrochem. Res. 2014, 4 (4), 435–439. https://doi.org/10.1007/s13203-014-0086-6.

(20) Bari Siddiqui, M. A.; Aitani, A. M.; Saeed, M. R.; Al-Khattaf, S. Enhancing the Production of Light Olefins by Catalytic Cracking of FCC Naphtha over Mesoporous ZSM-5 Catalyst. Top. Catal. 2010, 53 (19–20), 1387–1393. https://doi.org/10.1007/s11244-010-9598-1.

(21) Akah, A.; Al-Ghrami, M. Maximizing Propylene Production via FCC Technology. Appl. Petrochem. Res. 2015, 5 (4), 377–392. https://doi.org/10.1007/s13203-015-0104-3.

(22) Advances in Fluid Catalytic Cracking: Testing, Characterization and Environmental Regulations; Occelli, M. L., Ed.; 2017.

(23) Liu, H.; Zhao, H.; Gao, X.; Ma, J. A Novel FCC Catalyst Synthesized via in Situ Overgrowth of NaY Zeolite on Kaolin Microspheres for Maximizing Propylene Yield. Catal. Today 2007, 125 (3–4), 163–168. https://doi.org/10.1016/j.cattod.2007.05.005.

(24) Fu, C.; Anantharaman, R. Modelling of the Oxy-Combustion Fluid Catalytic Cracking Units. In Computer Aided Chemical Engineering; Elsevier, 2017; Vol. 40, pp 331–336. https://doi.org/10.1016/B978-0-444-63965-3.50 057-X.

(25) Grace, J. R.; Bi, X.; Ellis, N. Essentials of Fluidization Technology; Wiley-VCH: Weinheim, 2020.

(26) Al-Khattaf, S.; Saeed, M. R.; Aitani, A.; Klein, M. T. Catalytic Cracking of Light Crude Oil to Light Olefins and Naphtha over E-Cat and MFI: Microactivity Test versus Advanced Cracking Evaluation and the Effect of High Reaction Temperature. Energy Fuels 2018, 32 (5), 6189–6199. https://doi.org/10.1021/acs.energyfuels.8b00691 . (27) Mann, R. Fluid Catalytic Cracking: Some Recent Developments in Catalyst Particle Design and Unit Hardware. Catal. Today 1993, 18 (4), 509–528. https://doi.org/10.1016/0920-5861(93)80066-A.

(28) Treese, S. A.; Pujadó, P. R.; Jones, D. S. J. Handbook of Petroleum Processing, 2nd edition.; SpringerReference: Cham, 2015.

(29) Pelissari, D. C.; Alvarez-Castro, H. C.; Mori, M.; Martignoni, W. STUDY OF FEEDSTOCK INJECTION TO IMPROVE CATALYST HOMOGENIZATION IN THE RISER OF A FCC. Braz. J. Chem. Eng. 2016, 33 (3), 559–566. https://doi.org/10.1590/0104-6632.20160333s20 150124.

(30) Bare, S. R.; Charochak, M. E.; Kelly, S. D.; Lai, B.; Wang, J.; Chen-Wiegart, Y. K. Back Cover: Characterization of a Fluidized Catalytic Cracking Catalyst on Ensemble and Individual Particle Level by X-Ray Micro- and Nanotomography, Micro-X-Ray Fluorescence, and Micro-X-Ray Diffraction (ChemCatChem 5/2014). ChemCatChem 2014, 6 (5), 1482–1482. https://doi.org/10.1002/cctc.201490033.

(31) Vermeiren, W.; Gilson, J.-P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top. Catal. 2009, 52 (9), 1131–1161. https://doi.org/10.1007/s11244-009-9271-8.

(32) Kaiser, M. J.; Gary, J. H.; Handwerk, G. Petroleum Refining.; CRC Press: USA, 2007.

(33) Yan, Z.; Fan, Y.; Wang, Z.; Chen, S.; Lu, C. Dispersion of Feed Spray in a New Type of FCC Feed Injection Scheme. AIChE J. 2016, 62 (1), 46–61. https://doi.org/10.1002/aic.15047.

(34) Ancheyta-Juárez, J.; Sotelo-Boyás, R. Estimation of Kinetic Constants of a Five-Lump Model for Fluid Catalytic Cracking Process Using Simpler Sub-Models. Energy Fuels 2000, 14 (6), 1226–1231. https://doi.org/10.1021/ef000097a.

(35) Kim, S.; Yeo, C.; Lee, D. Effect of Fines Content on Fluidity of FCC Catalysts for Stable Operation of Fluid Catalytic Cracking Unit. Energies 2019, 12 (2), 293. https://doi.org/10.3390/en12020293.

(36) Kumar, D.; Sikroria, T.; A, K.; Kumar, P.; G, S. A Twin-Fluid Injector for FCC Feed Injection. IPCSE 2019, 4 (3), 109–115. https://doi.org/10.15406/ipcse.2019.04.00110.

(37) Hosseinpour, N.; Mortazavi, Y.; Khodadadi, A. A. Cumene Cracking Activity and Enhanced Regeneration of FCC Catalysts Comprising HY-Zeolite and LaBO 3 (B = Co, Mn, and Fe) Perovskites. Appl. Catal. A Gen. 2014, 487, 26–35. https://doi.org/10.1016/j.apcata.2014.08.035.

(38) Oloruntoba, A.; Zhang, Y.; Hsu, C. S. State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies. Energies 2022, 15 (6), 2061. https://doi.org/10.3390/en15062061.

(39) Haghi, A. K. Applied Chemistry and Chemical Engineering. Volume 4, Volume 4,; 2018.

(40) Cristina, P. Four – Lump Kinetic Model vs. Three - Lump Kinetic Model for the Fluid Catalytic Cracking Riser Reactor. Procedia Eng. 2015, 100, 602–608. https://doi.org/10.1016/j.proeng.2015.01.410.

(41) Cao, G.; Pisu, M.; Morbidelli, M. A Lumped Kinetic Model for Liquid-Phase Catalytic Oxidation Ofp-Xylene to Terephthalic Acid. Chem. Eng. Sci. 1994, 49 (24), 5775–5788. https://doi.org/10.1016/0009-2509(94)00366-1.

(42) Ranzi, E.; Dente, M.; Goldaniga, A.; Bozzano, G.; Faravelli, T. Lumping Procedures in Detailed Kinetic Modeling of Gasification, Pyrolysis, Partial Oxidation and Combustion of Hydrocarbon Mixtures. Prog. Energy Combust. Sci. 2001, 27 (1), 99–139. https://doi.org/10.1016/s0360-1285(00)00013-7.

(43) de Oliveira, L. P.; Hudebine, D.; Guillaume, D.; Verstraete, J. J. A Review of Kinetic Modeling Methodologies for Complex Processes. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2016, 71 (3), 45. https://doi.org/10.2516/ogst/2016011.

(44) Ancheyta, J.; Sánchez, S.; Rodríguez, M. A. Kinetic Modeling of Hydrocracking of Heavy Oil Fractions: A Review. Catal. Today 2005, 109 (1–4), 76–92. https://doi.org/10.1016/j.cattod.2005.08.015.

(45) Weekman, V. W. Model of Catalytic Cracking Conversion in Fixed, Moving, and Fluid-Bed Reactors. Ind. Eng. Chem. Proc. Des. Dev. 1968, 7 (1), 90–95. https://doi.org/10.1021/i260025a018.

(46) Pitault, I.; Nevicato, D.; Forissier, M.; Bernard, J.-R. KINETIC MODEL BASED ON A MOLECULAR DESCRIPTION FOR CATALYTIC CRACKING OF VACUUM GAS OIL. 14.

(47) López García, C.; Hudebine, D.; Schweitzer, J.-M.; Verstraete, J. J.; Ferré, D. In-Depth Modeling of Gas Oil Hydrotreating: From Feedstock Reconstruction to Reactor Stability Analysis. Catal. Today 2010, 150 (3–4), 279–299. https://doi.org/10.1016/j.cattod.2009.08.002.

(48) Smith, J. M. Chemical Engineering Kinetics, 3d ed.; McGraw-Hill chemical engineering series; McGraw-Hill: New York, 1981.

(49) Gupta, A.; Subba Rao, D. Model for the Performance of a Fluid Catalytic Cracking (FCC) Riser Reactor: Effect of Feed Atomization. Chem. Eng. Sci. 2001, 56 (15), 4489–4503. https://doi.org/10.1016/S0009-2509(01)00122-1 . (50) Gupta, R. K.; Kumar, V.; Srivastava, V. K. A New Generic Approach for the Modeling of Fluid Catalytic Cracking (FCC) Riser Reactor. Chem. Eng. Sci. 2007, 62 (17), 4510–4528. https://doi.org/10.1016/j.ces.2007.05.009.

(51) Levenspiel, O. Chemical Reaction Engineering; Wiley India: New Delhi, 2007.

(52) Ahari, J. S.; Farshi, A.; Forsat, K. A MATHEMATICAL MODELING OF THE RISER REACTOR IN INDUSTRIAL FCC UNIT. 2008, 11.

(53) Ali, H.; Rohani, S. Dynamic Modeling and Simulation of a Riser-Type Fluid Catalytic Cracking Unit. Chem. Eng. Technol. 1997, 20 (2), 118–130. https://doi.org/10.1002/ceat.270200209.

(54) Olafadehan, O. A.; Sunmola, O. P.; Jaiyeola, A.; Efeovbokhan, V.; Abatan, O. G. Modelling and Simulation of an Industrial RFCCU-Riser Reactor for Catalytic Cracking of Vacuum Residue. Appl. Petrochem. Res. 2018, 8 (4), 219–237. https://doi.org/10.1007/s13203-018-0212-y.

(55) Abbas, Z.; Mehrab,Abdollahi; Payam,Oarvasi. Riser Reactor Simulation in a Fluid Catalytic Cracking Unit. ResearchGate 2017.

(56) You, H.; Xu, C.; Gao, J.; Liu, Z.; Yan, P. Nine Lumped Kinetic Models of FCC Gasoline under the Aromatization Reaction Conditions. Catal. Commun. 2006, 7 (8), 554–558. https://doi.org/10.1016/j.catcom.2006.01.016. (57) Han, I.-S.; Chung, C.-B. Dynamic Modeling

and Simulation of a Fluidized Catalytic Cracking Process. Part I: Process Modeling. Chem. Eng. Sci. 2001, 56 (5), 1951–1971. https://doi.org/10.1016/S0009-2509(00)00493-0 . (58) Patience, G. S.; Chaouki, J.; Berruti, F.; Wong, R. Scaling Considerations for Circulating Fluidized Bed Risers. Powder Technol. 1992, 72 (1), 31–37. https://doi.org/10.1016/S0032-5910(92)85018- Q.

(59) Feiyue, W.; Huixin, W. The Establishment of a Lumped Kinetic Model for FDFCC. Pet. Sci. Technol. 2012, 30 (10), 1031–1039. https://doi.org/10.1080/10916460802608909.

(60) Asaee, S. D. S.; Vafajoo, L.; Khorasheh, F. A New Approach to Estimate Parameters of a Lumped Kinetic Model for Hydroconversion of Heavy Residue. Fuel 2014, 134, 343–353. https://doi.org/10.1016/j.fuel.2014.05.079.

(61) John, Y. M.; Mustafa, M. A.; Patel, R.; Mujtaba, I. M. Parameter Estimation of a Six-Lump Kinetic Model of an Industrial Fluid Catalytic Cracking Unit. Fuel 2019, 235, 1436–1454. https://doi.org/10.1016/j.fuel.2018.08.033.

(62) Bollas, G. M.; Lappas, A. A.; Iatridis, D. K.; Vasalos, I. A. Five-Lump Kinetic Model with Selective Catalyst Deactivation for the Prediction of the Product Selectivity in the Fluid Catalytic Cracking Process. Catal. Today 2007, 127 (1–4), 31–43. https://doi.org/10.1016/j.cattod.2007.02.037.

(63) Corella, J.; Frances, E. On the Kinetic Equation of Deactivation of Commercial Cracking (Fcc) Catalysts with Commercial Feedstocks. In Studies in Surface Science and Catalysis; Elsevier, 1991; Vol. 68, pp 375–381. https://doi.org/10.1016/S0167-2991(08)62657-9 . (64) Bartholomew, C. H.; Butt, J. B. Catalyst Deactivation 1991: Proceedings of the 5th International Symposium, Evanston, IL, June 24-26, 1991.; Elsevier Science: Amsterdam, 2014.

(65) Xu, O.; Su, H.; Mu, S.; Chu, J. 7-Lump Kinetic Model for Residual Oil Catalytic Cracking. J. Zhejiang Univ. - Sci. A 2006, 7 (11), 1932–1941. https://doi.org/10.1631/jzus.2006.A1932.

(66) Ying, L.; Yuan, X.; Ye, M.; Cheng, Y.; Li, X.; Liu, Z. A Seven Lumped Kinetic Model for Industrial Catalyst in DMTO Process. Chem. Eng. Res. Des. 2015, 100, 179–191. https://doi.org/10.1016/j.cherd.2015.05.024.

(67) Chen, Y.; Wang, W.; Wang, Z.; Hou, K.; Ouyang, F.; Li, D. A 12-Lump Kinetic Model for Heavy Oil Fluid Catalytic Cracking for Cleaning Gasoline and Enhancing Light Olefins Yield. Pet. Sci. Technol. 2020, 38 (19), 912–921. https://doi.org/10.1080/10916466.2020.1796701.