Green Hydrogen Production - The Energy of the Future

Pranay Shah

Department of Chemical Engineering, ICT Mumbai

Harsh Upadhyay

Department of Chemical Engineering, ICT Mumbai

DOI: https://doi.org/10.36664/bt/2022/v69i1/172495

Keywords: Hydrogen fuel cell, green energy, solar water splitting, water electrolysis.


Abstract

Hydrogen is the most efficient energy carrier. It can be obtained from many sources like fossil fuels and water. Most of the energy generation uses fossil fuels, resulting in environmentally unhealthy activities and the production of toxic by-products, which contribute to environmental degradation and climate change. Among many hydrogen production methods, non-polluting and high purity of hydrogen can be obtained by water electrolysis. The produced hydrogen and oxygen can be directly used for fuel cell and industrial applications. Overall water splitting results in only 4% of global industrial hydrogen being produced by electrolysis of water mainly because of economic problems. Nowadays, the increase in demand for green hydrogen has increased the interest in PEM water electrolysis. In this work, we look at various methods of hydrogen production, namely water electrolysis and solar water splitting. This project also briefly describes the applications of green hydrogen along with its effectiveness to replace the current method of hydrogen production.

Downloads

Download data is not yet available.

References

(1) Dincer, I. Green Methods for Hydrogen Production. Int. J. Hydrogen Energy 2012, 37 (2), 1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173.

(2) Gao, R.; Zhu, J.; Yan, D. Transition Metal-Based Layered Double Hydroxides for Photo(Electro)Chemical Water Splitting: A Mini Review. Nanoscale 2021, 13 (32), 13593–13603. https://doi.org/10.1039/d1nr03409j.

(3) Eisenstadt, M. M.; Cox, K. E. Hydrogen Production from Solar Energy. Sol. Energy 1975, 17 (1), 59–65. https://doi.org/10.1016/0038-092x(75)90017-1

(4) James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production Final Report Technoeconomic Analysis for Photoelectrochemical Hydrogen Production 2; 2009. https://doi.org/10.2172/1218403.

(5) Shaheen, S. A.; Lipman, T. E. Reducing Greenhouse Emissions and Fuel Consumption. IATSS res. 2007, 31 (1), 6–20. https://doi.org/10.1016/s0386-1112(14)60179-5.

(6) Brandon, N. P.; Kurban, Z. Clean Energy and the Hydrogen Economy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017, 375 (2098), 20160400. https://doi.org/10.1098/rsta.2016.0400.

(7) Zoulias, E.; Varkaraki, E.; Lymberopoulos, N.; Christodoulou, C. N.; Karagiorgis, G. N. A REVIEW ON WATER ELECTROLYSIS. 19. Rashid, M. M.; Mesfer, M. K. al; Naseem, H.; Danish, M. Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. Int. J. Eng. Adv. Technol. 2015, 4 (3). Kovač, A.; Marciuš, D.; Budin, L. Solar Hydrogen Production via Alkaline Water Electrolysis. Int. J. Hydrogen Energy 2018, 44 (20), 9841–9848. https://doi.org/10.1016/j.ijhydene.2018.11.007.

Grigoriev, S. A.; Fateev, V. N.; Bessarabov, D. G.; Millet, P. Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology. Int. J. Hydrogen Energy 2020, 45 (49), 26036–26058. https://doi.org/10.1016/j.ijhydene.2020.03.109.

Kim, J.; Lee, S.-M.; Srinivasan, S.; Chamberlin, C. E. Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation. J. Electrochem. Soc. 1995, 142 (8), 2670–2674. https://doi.org/10.1149/1.2050072.

Udagawa, J.; Aguiar, P.; Brandon, N. P. Hydrogen Production through Steam Electrolysis: Model-Based Steady State Performance of a Cathode-Supported Intermediate Temperature Solid Oxide Electrolysis Cell. J. Power Sources 2007, 166 (1), 127–136. https://doi.org/10.1016/j.jpowsour.2006.12.081.

Mansilla, C.; Sigurvinsson, J.; Bontemps, A.; Maréchal, A.; Werkoff, F. Heat Management for Hydrogen Production by High Temperature Steam Electrolysis. Energy (Oxf.) 2007, 32 (4), 423–430. https://doi.org/10.1016/j.energy.2006.07.033.

Kelly, N. A. Hydrogen Production by Water Electrolysis. In Advances in Hydrogen Production, Storage and Distribution; Elsevier, 2014; pp 159–185.

Moss, B.; Babacan, O.; Kafizas, A.; Hankin, A. A Review of Inorganic Photoelectrode Developments and Reactor Scale‐up Challenges for Solar Hydrogen Production. Adv. Energy Mater. 2021, 11 (13), 2003286. https://doi.org/10.1002/aenm.202003286.

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473. https://doi.org/10.1021/cr1002326.

(17) Chiu, Y.-H.; Lai, T.-H.; Kuo, M.-Y.; Hsieh, P.-Y.; Hsu, Y.-J. Photoelectrochemical Cells for Solar Hydrogen Production: Challenges and Opportunities. APL Mater. 2019, 7 (8), 080901. https://doi.org/10.1063/1.5109785.

(18) Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. Accelerating Materials Development for Photoelectrochemical Hydrogen Production: Standards for Methods, Definitions, and Reporting Protocols. J. Mater. Res. 2010, 25 (1), 3–16. https://doi.org/10.1557/jmr.2010.0020.

(19) Fan, L.; Wei, B.; Xu, L.; Liu, Y.; Cao, W.; Ma, N.; Gao, H. Ion Exchange Synthesis of Bi2MoO6/BiOI Heterojunctions for Photocatalytic Degradation and Photoelectrochemical Water Splitting. Nano 2016, 11 (08), 1650095. https://doi.org/10.1142/s1793292016500958

(20) Landman, A.; Halabi, R.; Dias, P.; Dotan, H.; Mehlmann, A.; Shter, G. E.; Halabi, M.; Naseraldeen, O.; Mendes, A.; Grader, G. S.; Rothschild, A. Decoupled Photoelectrochemical Water Splitting System for Centralized Hydrogen Production. Joule 2020, 4 (2), 448–471. https://doi.org/10.1016/j.joule.2019.12.006.

(21) an de Krol, R. A Faster Path to Solar Water Splitting. Matter 2020, 3 (5), 1389–1391. https://doi.org/10.1016/j.matt.2020.10.017. (22) Akkerman, I. Photobiological Hydrogen Production: Photochemical Efficiency and Bioreactor Design. Int. J. Hydrogen Energy 2002, 27 (11–12), 1195–1208. https://doi.org/10.1016/s0360-3199(02)00071-x.

(23) Asada’, Y.; Miyake2, J. REVIEW Photobiological Hydrogen Production; 1999; Vol. 88.

(24) Bagi, Z.; Maroti, J.; Maroti, G.; Kovacs, K. L. Enzymes and Microorganisms for Biohydrogen Production. Curr. Biochem. Eng. 2014, 1 (2), 106–116. https://doi.org/10.2174/2212711901999140618110 310.

Haseli, Y. Maximum Conversion Efficiency of Hydrogen Fuel Cells. Int. J. Hydrogen Energy 2018, 43 (18), 9015–9021. https://doi.org/10.1016/j.ijhydene.2018.03.076.

Kodama, T.; Gokon, N. Thermochemical Cycles for High-Temperature Solar Hydrogen Production. Chem. Rev. 2007, 107 (10), 4048–4077. https://doi.org/10.1021/cr050188a.

Chen, Y.; Wang, G.; Li, H.; Zhang, F.; Jiang, H.; Tian, G. Controlled Synthesis and Exceptional Photoelectrocatalytic Properties of Bi2S3/MoS2/Bi2MoO6 Ternary Hetero-Structured Porous Film. J. Colloid Interface Sci. 2019, 555, 214–223. https://doi.org/10.1016/j.jcis.2019.07.097.

Ortiz, C.; Tejada, C.; Chacartegui, R.; Bravo, R.; Carro, A.; Valverde, J. M.; Valverde, J. Solar Combined Cycle with High-Temperature Thermochemical Energy Storage. Energy Convers. Manag. 2021, 241 (114274), 114274. https://doi.org/10.1016/j.enconman.2021.114274.

Salvi, B. L.; Subramanian, K. A. Sustainable Development of Road Transportation Sector Using Hydrogen Energy System. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. https://doi.org/10.1016/j.rser.2015.07.030.

Widera, B. Renewable Hydrogen Implementations for Combined Energy Storage, Transportation and Stationary Applications. Therm. Sci. Eng. Prog. 2020, 16 (100460), 100460. https://doi.org/10.1016/j.tsep.2019.100460.

Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J. A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation. J. Power Sources 2007, 165 (2), 739–756. https://doi.org/10.1016/j.jpowsour.2006.12.012.

Garland, N. L.; Papageorgopoulos, D. C.; Stanford, J. M. Hydrogen and Fuel Cell Technology: Progress, Challenges, and Future Directions. Energy Procedia 2012, 28, 2–11. https://doi.org/10.1016/j.egypro.2012.08.034