Antimicrobial Polymers Containing Ammonia Derivatives

Ekta Jagtiani

Department of Polymer and Surface Coating Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, India - 400019

Sreeranjini Pulakkat

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, India - 400019.

Vandana Patravale

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, India - 400019.

DOI: https://doi.org/10.36664/bt/2022/v69i1/172493

Keywords: Antimicrobial polymers, Biocides, Quaternary ammonium compounds, Bacterial growth inhibition, Cationic polymers.


Abstract

The ever increasing number of harmful pathogens and the implications of their spread pose a major issue for modern science. These infections can be a primary source of concern in many sectors including healthcare, pharmaceuticals, dental restorations, surgical instruments, medical equipment, and sanitation systems. Polymeric antimicrobials can destroy or prevent germs from developing on a surface or in the surrounding environment. They have recently garnered considerable attention owing to their higher efficacy, lesser toxicity, higher selectivity, sustainability, eco-friendly nature, and longer lifespans. In the face of the prevalence of antibiotic resistance, the development of new antimicrobial polymers with better efficacy has been a major priority. This review focuses on antimicrobial polymers containing nitrogen, the relationship between their activity and structure, their method of action, the effect of several parameters on antimicrobial potency, and their applications in various spheres including COVID-19.

Downloads

Download data is not yet available.

References

A. G. P. Ross, G. R. Olds, A. W. Cripps, J. J. Farrar and D. P. McManus, New England Journal of Medicine, 2013, 368, 1817–1825.

Y.-S. Lin, Ming-Yuan-Lee, C.-H. Yang and K.-S. Huang, Current Proteomics, 2016, 11, 116–120.

C.-F. Chan, K.-S. Huang, M.-Y. Lee, C.-H. Yang, C.-Y. Wang and Y.-S. Lin, Current Organic Chemistry, 2014, 18, 204–215.

D. Sun, M. Babar Shahzad, M. Li, G. Wang and D. Xu, Materials Technology, 2015, 30, B90–B95.

C. Desrousseaux, V. Sautou, S. Descamps and O. Traoré, Journal of Hospital Infection, 2013, 85, 87–93.

R. Kargupta, S. Bok, C. M. Darr, B. D. Crist, K. Gangopadhyay, S. Gangopadhyay and S. Sengupta, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 475–495.

A. Holban, A. Iordanskii, A. Grumezescu, A. Bychkova, E. Andronescu, L. Mogoanta, G. Mogosanu and F. Iordache, Current Pharmaceutical Biotechnology, 2015, 16, 112–120.

A. Muñoz-Bonilla and M. Fernández-García, European Polymer Journal, 2015, 65, 46–62.

A. Muñoz-Bonilla and M. Fernández-García, Progress in Polymer Science (Oxford), 2012, 37, 281–339.

L. Timofeeva and N. Kleshcheva, Applied Microbiology and Biotechnology, 2011, 89, 475–492.

G. N. Tew, R. W. Scott, M. L. Klein and W. F. Degrado, Accounts of Chemical Research, 2010, 43, 30–39.

P. Li, X. Li, R. Saravanan, C. M. Li and S. S. J. Leong, RSC Advances, 2012, 2, 4031–4044.

E. R. Kenawy, S. D. Worley and R. Broughton, Biomacromolecules, 2007, 8, 1359–1384.

N. A. and R. A. Office of the Federal Register, govinfo.gov.

H. M. Lode, Clinical Microbiology and Infection, 2009, 15, 212–217.

M. G and R. AD, Clinical microbiology reviews, 1999, 12, 147–179.

F. Siedenbiedel and J. C. Tiller, Polymers, 2012, 4, 46–71.

Z. Zheng, Q. Xu, J. Guo, J. Qin, H. Mao, B. Wang and F. Yan, ACS Applied Materials and Interfaces, 2016, 8, 12684–12692.

R. Tejero, D. López, F. López-Fabal, J. L. Gómez-Garcés and M. Fernández-García, Biomacromolecules, 2015, 16, 1844–1854.

T. L and K. N, Applied microbiology and biotechnology, , DOI:10.1007/S00253-010-2920-9.

A. Muñoz-Bonilla and M. Fernández-García, Progress in Polymer Science, 2012, 37, 281–339.

M. S. Ganewatta and C. Tang, Polymer, 2015, 63, A1–A29.

A. I. Barzic and S. Ioan, Concepts, Compounds and the Alternatives of Antibacterials, , DOI:10.5772/60755.

Q. Yu, Z. Wu and H. Chen, Acta Biomaterialia, 2015, 16, 1–13.

M. Álvarez-Paino, A. Muñoz-Bonilla and M. Fernández-García, Nanomaterials 2017, Vol. 7, Page 48, 2017, 7, 48.

S. J. Singer and G. L. Nicolson, Science, 1972, 175, 720–731.

T. Franklin and G. Snow, 2005.

P. Gilbert and L. E. Moore, Journal of Applied Microbiology, 2005, 99, 703–715.

J. Y. Maillard, Symposium series (Society for Applied Microbiology), 2002, 16S-27S.

3Merianos JJ (2001) Surface-active agents. In: Block SS (ed) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams & Wilkins, New York, pp 283–320 - (accessed July 14, 2021).

Tashiro T (2001) Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng 286(2):63–87 - Google Search, , (accessed July 14, 2021).

S. P. Denyer and G. S. A. B. Stewart, in International Biodeterioration and Biodegradation, Elsevier Sci Ltd, 1998, vol. 41, pp. 261–268.

G. J. Gabriel, A. Som, A. E. Madkour, T. Eren and G. N. Tew, Materials Science and Engineering R: Reports, 2007, 57, 28–64.

A. P. Fraise, J.-Y. Maillard and Syed. Sattar, .

O. Rahn and W. P. van Eseltine, https://doi.org/10.1146/annurev.mi.01.100147.001133 , 2003, 1, 173–192.

E. S. Hatakeyama, H. Ju, C. J. Gabriel, J. L. Lohr, J. E. Bara, R. D. Noble, B. D. Freeman and D. L. Gin, Journal of Membrane Science, 2009, 330, 104–116.

C. J. Waschinski and J. C. Tiller, Biomacromolecules, 2005, 6, 235–243.

P. Ramburrun, N. A. Pringle, A. Dube, R. Z. Adam, S. D’Souza and M. Aucamp, Materials, 2021, 14, 3167.

A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers - Li - 2000 - Journal of Applied Polymer Science - Wiley Online Library, https://onlinelibrary.wiley.com/doi/abs/10.1002/1097- 4628(20001017)78:3%3C676::AID-APP240%3E3.0. CO;2-E, (accessed July 14, 2021). E. B. Anderson and T. E. Long, Polymer, 2010, 51, 2447–2454.

C. Soykan, R. Coşkun and A. Delibaş, http://dx.doi.org/10.1080/10601320500246693, 2014, 42 A, 1603–1619.

A. Muñoz-Bonilla and M. Fernández-García, Progress in Polymer Science (Oxford), 2012, 37, 281–339.

E. F. Palermo and K. Kuroda, Biomacromolecules, 2009, 10, 1416–1428.

Amphiphilic polymethacrylate derivatives as antimicrobial agents - PubMed, https://pubmed.ncbi.nlm.nih.gov/15783168/, (accessed July 14, 2021).

G. Sauvet, W. Fortuniak, K. Kazmierski and J. Chojnowski, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 2939–2948.

U. Mizerska, W. Fortuniak, J. Chojnowski, R. Hałasa, A. Konopacka and W. Werel, European Polymer Journal, 2009, 45, 779–787.

S. Shima and H. Sakai, http://dx.doi.org/10.1080/00021369.1977.10862764, 2014, 41, 1807–1809.

N. M and O. K, Applied and environmental microbiology, 2002, 68, 3575–3581.

S. Maeda, K. K. Kunimoto, C. Sasaki, A. Kuwae and K. Hanai, Journal of Molecular Structure, 2003, 655, 149–155.

S. Shima, H. Matsuoka, T. Iwamoto and H. Sakai, Journal of Antibiotics, 1984, 37, 1449–1455.

M. A. Ghannoum and L. B. Rice, Clinical Microbiology Reviews, 1999, 12, 501.

S. Shima, Y. Fukuhara and H. Sakai, Agricultural and Biological Chemistry, 1982, 46, 1917–1919.

Y. Kido, S. Hiramoto, M. Murao, Y. Horio, T. Miyazaki, T. Kodama and Y. Nakabou, The Journal of Nutrition, 2003, 133, 1887–1891.

J. T, D. M, J. R, N. LS and L. CT, Acta biomaterialia, 2014, 10, 1632–1645.

J. T, K. SG, N. LS and L. CT, Current topics in medicinal chemistry, 2008, 8, 354–364.

R. A. A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis and M. G. Paoletti, Carbohydrate Polymers, 2012, 87, 995–1012.

C. R. Allan and L. A. Hadwiger, Experimental Mycology, 1979, 3, 285–287.

D. F. Kendra and L. A. Hadwiger, Experimental Mycology, 1984, 8, 276–281.

S. Hirano and N. Nagao, http://dx.doi.org/10.1080/00021369.1989.10869777, 2014, 53, 3065–3066.

M. Kong, X. G. Chen, K. Xing and H. J. Park, International Journal of Food Microbiology, 2010, 144, 51–63.

Y. Hu, Y. Du, J. Yang, Y. Tang, J. Li and X. Wang, Polymer, 2007, 48, 3098–3106.

M. Kong, X. G. Chen, C. S. Liu, C. G. Liu, X. H. Meng and L. J. Yu, Colloids and Surfaces B: Biointerfaces, 2008, 65, 197–202.

N. R. Sudarshan, D. G. Hoover and D. Knorr, Food Biotechnology, 1992, 6, 257–272.

C. BK, K. KY, Y. YJ, O. SJ, C. JH and K. CY, International journal of antimicrobial agents, 2001, 18, 553–557.

E. P, F. JC, P. E, P. ME and X. M. F, Ultramicroscopy, 2008, 108, 1128–1134.

D. Raafat, K. von Bargen, A. Haas and H. G. Sahl, Applied and Environmental Microbiology, 2008, 74, 3764–3773.

C. López de Dicastillo, M. Guerrero Correa, F. B. Martínez, C. Streitt and M. José Galotto, in Antimicrobial Resistance - A One Health Perspective, IntechOpen, 2021.

T. Ikeda, A. Ledwith, C. H. Bamford and R. A. Hann, BBA - Biomembranes, 1984, 769, 57–66.

Y. Zhang, J. Jiang and Y. Chen, .

M. Albert, P. Feiertag, G. Hayn, R. Saf and H. Hönig, Biomacromolecules, 2003, 4, 1811–1817.

B. Brissault, A. Kichler, C. Guis, C. Leborgne, O. Danos and H. Cheradame, Bioconjugate Chemistry, 2003, 14, 581–587.

S. K. Samal, M. Dash, S. van Vlierberghe, D. L. Kaplan, E. Chiellini, C. van Blitterswijk, L. Moroni and P. Dubruel, Chemical Society Reviews, 2012, 41, 7147–7194.

J. Lin, S. Qiu, K. Lewis and A. M. Klibanov, Biotechnology Progress, 2002, 18, 1082–1086.

N. M. Milović, J. Wang, K. Lewis and A. M. Klibanov, Biotechnology and Bioengineering, 2005, 90, 715–722.

J. Lin, S. Qiu, K. Lewis and A. M. Klibanov, Biotechnology and Bioengineering, 2003, 83, 168–172.

D. P. K, D. S. N, C. T, S. E and N. HJ, Mycopathologia, 2010, 170, 213–221. N. Beyth, S. Farah, A. J. Domb and E. I. Weiss, Reactive and Functional Polymers, 2014, 75, 81–88. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall - PubMed, https://pubmed.ncbi.nlm.nih.gov/15210068/, (accessed July 15, 2021).

M. M. Umair, Z. Jiang, W. Safdar, Z. Xie and X. Ren, Journal of Applied Polymer Science, , DOI:10.1002/APP.42483.

T. Anthierens, L. Billiet, F. Devlieghere and F. du Prez, Innovative Food Science and Emerging Technologies, 2012, 15, 81–85.

A. Gharsallaoui, C. Joly, N. Oulahal and P. Degraeve, Critical Reviews in Food Science and Nutrition, 2016, 56, 1275–1289.

H. Wang, H. Liu, C. Chu, Y. She, S. Jiang, L. Zhai, S. Jiang and X. Li, Food and Bioprocess Technology, 2015, 8, 1657–1667.

N. Kuplennik, R. Tchoudakov, Z. Ben-Barak Zelas, A. Sadovski, A. Fishman and M. Narkis, LWT - Food Science and Technology, 2015, 62, 278–286.

M. Buşilə, V. Muşat, T. Textor and B. Mahltig, RSC Advances, 2015, 5, 21562–21571.

D. Markovic, S. Milovanovic, M. Radetic, B. Jokic and I. Zizovic, Journal of Supercritical Fluids, 2015, 101, 215–221.

G. J. Gabriel, J. G. Pool, A. Som, J. M. Dabkowski, E. B. Coughlin, M. Muthukumar and G. N. Tew, Langmuir, 2008, 24, 12489–12495.

J. C. Tiller, C. J. Liao, K. Lewis and A. M. Klibanov, Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5981–5985.

C. G, L. G, X. H, C. S, B. JD and J. S, Biomaterials, 2009, 30, 5234–5240.

Y. Ye, Q. Song and Y. Mao, Journal of Materials Chemistry, 2011, 21, 13188–13194.