Advances in Food Pasteurization Techniques

Pranita Pawar

Institute of Chemical Technology, Mumbai Nathalal Parekh Road, Matunga Mumbai-400019

Harshal Bote

Institute of Chemical Technology, Mumbai Nathalal Parekh Road, Matunga Mumbai-400019

DOI: https://doi.org/10.36664/bt/2022/v69i1/172492

Keywords: Food Pasteurization, thermal processing, non-thermal processing, novel technologies.


Abstract

In the recent years, the consumer has been demanding highly nutritious, minimally processed foods with a longer
shelf life. Thus began the need for reviewing and upgrading of traditional pasteurization techniques and the need
for developing of new technologies for the pasteurization of food. The pasteurization techniques are classified into
thermal and non-thermal techniques. The aim of this review is to discuss A] Thermal pasteurization techniques:
HTST (High Temperature and Short Time pasteurization, LTLT (Low Temperature and Long Time) Pasteurization, UHT (Ultra High Temperature) Pasteurization, Pasteurization by water bath, Steam Pasteurization, Vacuum Steam
Pasteurization, Infrared (IR) Heating Pasteurization, Microwave Heating Pasteurization, Dielectric (Radiofrequency)
Heating Pasteurization. B] Non-Thermal Pasteurization Techniques: High Pressure Pasteurization (HPP) or
Hydrostatic High-Pressure Pasteurization, Irradiation Pasteurization, pulsed electric fields (PEF) Pasteurization, UV
(Ultraviolet) Pasteurization, Cold Plasma Pasteurization, Ultrasound Pasteurization, Supercritical Gas (SC)
Pasteurization, Oscillating Magnetic Field Pasteurization, Pulsed Light Pasteurization. All these pasteurization
techniques have their own advantages and limitations, so according to the characteristics of the food, one needs to
wisely choose the technique. Non-thermal techniques are not in use despite their minimal processing and
preservation of food quality attributes because they are expensive and complex with respect to thermal
techniques.

Downloads

Download data is not yet available.

References

(1) Preservation, N. F. Antonio Vicente and Ine ˆ s Alexandra Castro. 2007, 99–130.

(2) Oms-Oliu, G.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Light Treatments for Food Preservation. A Review. Food Bioprocess Technol. 2010, 3 (1), 13–23. https://doi.org/10.1007/s11947-008-0147-x.

(3) Cortés, C.; Esteve, M. J.; Rodrigo, D.; Torregrosa, F.; Frígola, A. Changes of Colour and Carotenoids Contents during High Intensity Pulsed Electric Field Treatment in Orange Juices. Food Chem. Toxicol. 2006, 44 (11), 1932–1939. https://doi.org/10.1016/j.fct.2006.06.026.

(4) Mújica-Paz, H.; Valdez-Fragoso, A.; Samson, C. T.; Welti-Chanes, J.; Torres, A. High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food Bioprocess Technol. 2011, 4 (6), 969–985. https://doi.org/10.1007/s11947-011-0543-5.

(5) Dumalisile, P.; Witthuhn, C. Impact of Different Pasteurization Temperatures on the Survival of Microbial Contaminants Isolated from Pasteurized Milk. 2005, No. March 2019. https://doi.org/10.1111/j.1471-0307.2005.001 89.x.

(6) ENRIGHT, J. B.; SADLER, W. W.; THOMAS, R. C. Pasteurization of Milk Containing the Organism of Q Fever. Am. J. Public Health 1957, 47 (6), 695–700. https://doi.org/10.2105/ajph.47.6.695.

(7) Datta, N.; Perkins, M. L.; Deeth, H. C. Ultra-High-Temperature ( UHT ) Treatment of Milk : Comparison of Direct and Indirect Modes of Heating Ultra-High-Temperature ( UHT ) Treatment of Milk : Comparison of Direct and Ind ... Nivedita Datta ; Anthony J Elliott ; Melinda L Perkins ; Hilton C Dee. 2002, No. October.

(8) Murphy, R. Y.; Davidson, M. A.; Marcy, J. A. Process Lethality Prediction for Escherichia Coli O157:H7 in Raw Franks during Cooking and Fully Cooked Franks during Post-Cook Pasteurization. J. Food Sci. 2004, 69 (4), 0–4. https://doi.org/10.1111/j.1365-2621.2004.tb0 6350.x.

(9) Chang, S.; Han, A. R.; Powers, J. R.; Kang, D. Evaluation of Steam Pasteurization in Controlling Salmonella Serotype Enteritidis on Raw Almond Surfaces. 2010, 50, 393–398. https://doi.org/10.1111/j.1472-765X.2010.02 809.x.

(10) Cenkowski, S.; Pronyk, C.; Zmidzinska, D.; Muir, W. E. Decontamination of Food Products with Superheated Steam. 2007, 83, 68–75. https://doi.org/10.1016/j.jfoodeng.2006.12.00 2.

(11) Shah, M. K.; Asa, G.; Sherwood, J.; Graber, K.; Bergholz, M. PT CR. Int. J. Food Microbiol. 2017. https://doi.org/10.1016/j.ijfoodmicro.2017.01 .003.

(12) Gabel, M. M.; Pan, Z.; Amaratunga, K. S. P.; Harris, L. J.; Thompson, J. F. Catalytic Infrared Dehydration of Onions. J. Food Sci. 2006, 71 (9). https://doi.org/10.1111/j.1750-3841.2006.001 70.x.

(13) Muriana, P.; Gande, N.; Robertson, W.; Jordan, B.; Mitra, S. Effect of Prepackage and Postpackage Pasteurization on Postprocess Elimination of Listeria Monocytogenes on Deli Turkey Products. J. Food Prot. 2004, 67 (11), 2472–2479. https://doi.org/10.4315/0362-028X-67.11.247 2.

(14) Cañumir, J. A.; Celis, J. E.; De Bruijn, J.; Vidal, L. V. Pasteurisation of Apple Juice by Using Microwaves. LWT - Food Sci. Technol. 2002, 35 (5), 389–392. https://doi.org/10.1006/fstl.2001.0865.

(15) Shenga, E. Effect of Pasteurization of Shell Egg on Its Quality Characteristics under Ambient Storage. 2010, 47 (August), 420–425. https://doi.org/10.1007/s13197-010-0069-2.

(16) Wei, X.; Lau, S. K.; Stratton, J.; Irmak, S.; Subbiah, J. Radiofrequency Pasteurization Process for Inactivation of Salmonella Spp. and Enterococcus Faecium NRRL B-2354 on Ground Black Pepper. Food Microbiol. 2019, 82 (March), 388–397. https://doi.org/10.1016/j.fm.2019.03.007.

(17) Liu, S.; Ozturk, S.; Xu, J.; Kong, F.; Gray, P.; Zhu, M. J.; Sablani, S. S.; Tang, J. Microbial Validation of Radio Frequency Pasteurization of Wheat Flour by Inoculated Pack Studies. J. Food Eng. 2018, 217, 68–74. https://doi.org/10.1016/j.jfoodeng.2017.08.01 3.

(18) Lau, S. K.; Thippareddi, H.; Jones, D.; Negahban, M.; Subbiah, J. Challenges in Radiofrequency Pasteurization of Shell Eggs: Coagulation Rings. J. Food Sci. 2016, 81 (10), E2492–E2502. https://doi.org/10.1111/1750-3841.13440.

(19) Kumar, S.; Thippareddi, H.; Subbiah, J.; Zivanovic, S.; Davidson, P. M.; Harte, F. Inactivation of Escherichia Coli K-12 in Apple Juice Using Combination of High-Pressure Homogenization and Chitosan. J. Food Sci. 2009, 74 (1). https://doi.org/10.1111/j.1750-3841.2008.009 74.x.

(20) Ferrari, G.; Maresca, P.; Ciccarone, R. The Application of High Hydrostatic Pressure for the Stabilization of Functional Foods: Pomegranate Juice. J. Food Eng. 2010, 100 (2), 245–253. https://doi.org/10.1016/j.jfoodeng.2010.04.00 6.

(21) Hau, L. Bin; Liew, M. H.; Yeh, L. Te. Preservation of Grass Prawns by Ionizing Radiation. J. Food Prot. 1992, 55 (3), 198–202. https://doi.org/10.4315/0362-028X-55.3.198.

(22) Tarkowski, J. A.; Beumer, R. R.; Kampelmacher, E. H. Low Gamma Irradiation of Raw Meat. II. Bacteriological Effects on Samples from Butcheries. Int. J. Food Microbiol. 1984, 1 (1), 25–31. https://doi.org/10.1016/0168-1605(84)90026- 6.

(23) Zhao, W.; Tang, Y.; Lu, L.; Chen, X.; Li, C. Review: Pulsed Electric Fields Processing of Protein-Based Foods. Food Bioprocess Technol. 2014, 7 (1), 114–125. https://doi.org/10.1007/s11947-012-1040-1.

(24) Amiali, M.; Ngadi, M. O.; Smith, L. P.; Vijaya, G. S.; Raghavan. Inactivation of Salmonella Enteritidis and Escherichia Coli O157:H7 in Liquid Egg Yolk Using Continuous Pulsed Electric Field Processing. ASAE Annu. Int. Meet. 2004 2004, No. January 2004, 7431–7459. https://doi.org/10.13031/2013.16994.

(25) Lu, G.; Li, C.; Liu, P.; Cui, H.; Yao, Y.; Zhang, Q. UV Inactivation of Microorganisms in Beer by a Novel Thin-Film Apparatus. Food Control 2010, 21 (10), 1312–1317. https://doi.org/10.1016/j.foodcont.2010.03.00 7.

(26) Keyser, M.; Muller, I. A.; Cilliers, F. P.; Nel, W.; Gouws, P. A. Ultraviolet Radiation as a Non-Thermal Treatment for the Inactivation of Microorganisms in Fruit Juice. Innov. Food Sci. Emerg. Technol. 2008, 9 (3), 348–354. https://doi.org/10.1016/j.ifset.2007.09.002.

(27) Song, H. P.; Kim, B.; Choe, J. H.; Jung, S.; Moon, S. Y.; Choe, W.; Jo, C. Evaluation of Atmospheric Pressure Plasma to Improve the Safety of Sliced Cheese and Ham Inoculated by 3-Strain Cocktail Listeria Monocytogenes. Food Microbiol. 2009, 26 (4), 432–436. https://doi.org/10.1016/j.fm.2009.02.010.

(28) Perni, S.; Shama, G.; Kong, M. G. Cold Atmospheric Plasma Disinfection of Cut Fruit Surfaces Contaminated with Migrating Microorganisms. J. Food Prot. 2008, 71 (8), 1619–1625. https://doi.org/10.4315/0362-028X-71.8.1619 . (29) Ziuzina, D.; Patil, S.; Cullen, P. J.; Keener, K. M.; Bourke, P. Atmospheric Cold Plasma Inactivation of Escherichia Coli, Salmonella Enterica Serovar Typhimurium and Listeria Monocytogenes Inoculated on Fresh Produce. Food Microbiol. 2014, 42, 109–116. https://doi.org/10.1016/j.fm.2014.02.007.

(30) Knorr, D.; Zenker, M.; Heinz, V.; Lee, D. U. Applications and Potential of Ultrasonics in Food Processing. Trends Food Sci. Technol. 2004, 15 (5), 261–266. https://doi.org/10.1016/j.tifs.2003.12.001.

(31) Ugarte-Romero, E.; Feng, H.; Martin, S. E.; Cadwallader, K. R.; Robinson, S. J. Inactivation of Escherichia Coli with Power Ultrasound in Apple Cider. J. Food Sci. 2006, 71 (2). https://doi.org/10.1111/j.1365-2621.2006.tb0 8890.x.

(32) Torabian, G.; Bahramian, B.; Zambon, A.; Spilimbergo, S.; Adil, Q.; Schindeler, A.; Valtchev, P.; Dehghani, F. A Hybrid Process for Increasing the Shelf Life of Elderberry Juice. J. Supercrit. Fluids 2018, 140, 406–414. https://doi.org/10.1016/j.supflu.2018.07.023.

(33) Manzocco, L.; Plazzotta, S.; Spilimbergo, S.; Nicoli, M. C. Impact of High-Pressure Carbon Dioxide on Polyphenoloxidase Activity and Stability of Fresh Apple Juice. LWT - Food Sci. Technol. 2017, 85, 363–371. https://doi.org/10.1016/j.lwt.2016.11.052.

(34) Hofmann, G. A. Deactivation Of Microorganisms by An Oscillating Magnetic Field. United States Pat. 1985, No. 19.

(35) Marquenie, D.; Geeraerd, A. H.; Lammertyn, J.; Soontjens, C.; Van Impe, J. F.; Michiels, C. W.; Nicolaï, B. M. Combinations of Pulsed White Light and UV-C or Mild Heat Treatment to Inactivate Conidia of Botrytis Cinerea and Monilia Fructigena. Int. J. Food Microbiol. 2003, 85 (1–2), 185–196. https://doi.org/10.1016/S0168-1605(02)0053 8-X.

(36) Krishnamurthy, K.; Demirci, A.; Irudayaraj, J. M. Inactivation of Staphylococcus Aureus in Milk Using Flow-through Pulsed UV-Light Treatment System. J. Food Sci. 2007, 72 (7). https://doi.org/10.1111/j.1750-3841.2007.004 38.x.

(37) Raynes, J. K.; Vincent, D.; Zawadzki, J. L.; Savin, K.; Mertens, D.; Logan, A.; Williams, R. P. W. Investigation of Age Gelation in UHT Milk. Beverages 2018, 4 (4), 1–21. https://doi.org/10.3390/beverages4040095.

(38) James, C.; Thornton, J. A.; Ketteringham, L.; James, S. J. Effect of Steam Condensation, Hot Water or Chlorinated Hot Water Immersion on Bacterial Numbers and Quality of Lamb Carcasses. J. Food Eng. 2000, 43 (4), 219–225. https://doi.org/10.1016/S0260-8774(99)0015 5-7.

(39) Morgan, A. I.; Radewonuk, E. R.; Scullen, O. J. Ultra High Temperature, Ultra Short Time Surface Pasteurization of Meat. J. Food Sci. 1996, 61 (6), 1216–1218. https://doi.org/10.1111/j.1365-2621.1996.tb1 0963.x.

(40) Shah, M.; Eklund, B.; Gustavo, L.; Lima, C.; Bergholz, T.; Iii, C. H. Microbial and Chemical Shelf-Life of Vacuum Steam-Pasteurized Whole Flaxseed and Milled Flaxseed. 2018, 83 (2). https://doi.org/10.1111/1750-3841.14050.

(41) Molin, G.; Östlund, K. Dry-Heat Inactivation of Bacillus Subtilis Spores by Means of Infra-Red Heating. Antonie Van Leeuwenhoek 1975, 41 (1), 329–335. https://doi.org/10.1007/BF02565067.

(42) Sawai, J.; Matsumoto, K.; Saito, T. aki; Isomura, Y.; Wada, R. Heat Activation and Germination-Promotion of Bacillus Subtilis Spores by Infrared Irradiation. Int. Biodeterior. Biodegrad. 2009, 63 (2), 196–200. https://doi.org/10.1016/j.ibiod.2008.09.003.

(43) Krishnamurthy, K.; Khurana, H. K.; Jun, S.; Irudayaraj, J.; Demirci, A. In Food Processing : An Overview. 2008, 7.

(44) Zhao, Y.; Flugstad, B.; Kolbe, E.; Park, J. W.; Wells, J. H. Using Capacitive (Radio Frequency) Dielectric Heating in Food Processing and Preservation - a Review. J. Food Process Eng. 2000, 23 (1), 25–55. https://doi.org/10.1111/j.1745-4530.2000.tb0 0502.x.

(45) Barzana, E.; Rubio, D.; Santamaria, R. I.; Garcia-Correa, O.; Garcia, F.; Sanz, V. E. R.; López-Munguía, A. Enzyme-Mediated Solvent Extraction of Carotenoids from Marigold Flower (Tagetes Erecta). J. Agric. Food Chem. 2002, 50 (16), 4491–4496. https://doi.org/10.1021/jf025550q.