Water Splitting: Recent Scientific and Technological Advances

Nishtha Saxena

Department of Chemistry M. Sc. Chemistry (1st year) Institute of Chemical Technology, Mumbai

DOI: https://doi.org/10.36664/bt/2022/v69i1/172491

Keywords: Photocatalytic water splitting, Electrocatalytic water splitting, Photoelectrochemical water splitting, phosphorus-containing catalysts.


Abstract

Hydrogen is a green fuel and has great potential as a sustainable and renewable energy carrier. It can be produced by electrocatalytic, photocatalytic, photoelectrochemical water splitting. It is essential to develop highly effective catalysts for economic and large-scale hydrogen production. Currently, phosphorus-containing catalysts have gained a lot of attention because of their unique properties such as different oxidation states, tunable structure, and exceptional physiochemical properties. In this review paper, the topics discussed are part of numerous research carried out to date in water splitting by phosphorus-containing photocatalysts and electrocatalysts that include phosphorus in elemental form, metal phosphonates, metal phosphates, transition metal phosphides, metal phosphorus trichalcogenides, and phosphorus-doped materials. A detailed mechanism of water splitting and the activity origin of phosphorus-containing catalysts are presented. Lastly, there are some challenges in water splitting listed below that we need to overcome shortly.

Downloads

Download data is not yet available.

References

E. Hu, Y. Yao, Y. Cui and G. Qian, Mater. Today Nano. 2021, 15, 100124.

X. Ren, D. Philo, Y. Li, L. Shi, K. Chang and J. Ye, Coord. Chem. Rev. 2020, 424, 213516.

A. Kondori, M. Esmaeilirad, A. Baskin, B. Song, J. Wei, W. Chen, C. U. Segre, R. Shahbazian-Yassar, D. Prendergast and M. Asadi, Adv. Energy Mater. 2019, 9, 1900516.

H. Zhao and Z. Y. Yuan, ChemCatChem. 2020, 12, 3797– 3810.

F. M. Oliveira, J. Pastika, V. Mazanek, M. Melle-Franco, Z. Sofer and R. Gusmao, ACS Appl. Mater. Interfaces. 2021, 13, 23638–23646.

Y. Yang, C. Zhou, W. Wang, W. Xiong, G. Zeng, D. Huang, C. Zhang, B. Song, W. Xue, X. Li, Z. Wang, D. He, H. Luo and Z. Ouyang, Chem. Eng. J. 2021, 405, 126547.

M. W. Kanan and D. G. Nocera, Science. 2008, 321, 1072– 1075.

X. Li, P. Xu, M. Chen, G. Zeng, D. Wang, F. Chen, W. Tang, C. Chen, C. Zhang and X. Tan, Chem. Eng. J. 2019, 366, 339–357.

H. Li, Y. Sun, Z. Y. Yuan, Y. P. Zhu and T. Y. Ma, Angew. Chem., Int. Ed. 2018, 57, 3222–3227.

Q. Wang and K. Domen, Chem. Rev. 2020, 120, 919–985.

C. Daulbayev, F. Sultanov, B. Bakbolat and O. Daulbayev, Int. J. Hydrogen Energy. 2020, 45, 33325–33342.

L. J. Gao, L. Chen, J. T. Ren, C. C. Weng, W. W. Tian and Z. Y. Yuan, J. Colloid Interface Sci. 2021, 589, 25–33

Y. Dong and S. Komarneni, Small Methods. 2020, 5, 2000719

H. Zhao and Z. Y. Yuan, ChemSusChem. 2021, 14, 130–149.

P. Rekha, S. Yadav and L. Singh, Ceram. Int. 2021, 47, 16385–16401.

W. Wang, M. Xu, X. Xu, W. Zhou and Z. Shao, Angew. Chem., Int. Ed. 2020, 59, 136–152

Y. Zhu, J. Ren, X. Zhang and D. Yang, Nanoscale. 2020, 12, 13297–13310

X. Han, H. M. Stewart, S. A. Shevlin, C. R. Catlow and Z. X. Guo, Nano Lett. 2014, 14, 4607–4614.

L. F. Hong, R. T. Guo, Y. Yuan, X. Y. Ji, Z. D. Lin, Z. S. Li and W. G. Pan, ChemSusChem. 2021, 14, 539–557.

J. Theerthagiri, A. P. Murthy, S. J. Lee, K. Karuppasamy, S. R. Arumugam, Y. Yu, M. M. Hanafiah, H.-S. Kim, V. Mittal and M. Y. Choi, Ceram. Int. 2021, 47, 4404–4425.

Z. Pu, T. Liu, I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, P. Ji, W. Hu, J. Liu and S. Mu, Adv. Funct. Mater. 2020, 30, 2004009.

A. Ray, S. Sultana, L. Paramanik and K. M. Parida, J. Mater. Chem. A. 2020, 8, 19196–19245. 23. R. Gusmao, Z. Sofer and M. Pumera, Angew, Chem., Int. Ed. 2019, 58, 9326–9337.

J. Sanchez, M. B. Stevens, A. R. Young, A. Gallo, M. Zhao, Y. Liu, M. V. Ramos-Garcés, M. Ben-Naim, J. L. Colón, R. Sinclair, L. A. King, M. Bajdich and T. F. Jaramillo, Adv. Energy Mater. 2021, 11, 2003545.

T. Di, B. Zhu, J. Zhang, B. Cheng and J. Yu, Appl. Surf. Sci.. 2016, 389, 775–782.

P. Bhanja, Y. Kim, K. Kani, B. Paul, T. Debnath, J. Lin, A. Bhaumik and Y. Yamauchi, Chem. Eng. J. 2020, 396, 125245.

J. T. Ren, G. G. Yuan, C. C. Weng, L. Chen and Z. Y. Yuan, ChemCatChem. 2018, 10, 5297–5305

P. Zheng, H. Wu, J. Guo, J. Dong, S. Jia and Z. Zhu, J. Alloys Compd. 2014, 615, 79–83

Y. Peng, J. He, Q. Liu, Z. Sun, W. Yan, Z. Pan, Y. Wu, S. Liang, W. Cheng and S. Wei, J. Phys. Chem. C. 2011, 115, 8184–8188.

M. Z. Rahman, K. Davey and S.-Z. Qiao, J. Mater. Chem. A. 2018, 6, 1305–1322.

H. Ma, Y. Li, S. Li and N. Liu, Appl. Surf. Sci. 2015, 357, 131–138