Water Splitting: Recent scientific and technological advances

Sahil Jadhav

Aditya Joshi

DOI: https://doi.org/10.36664/bt/2022/v69i1/172490

Keywords: Graphene, Electrocatalyst, Metal oxide, Semiconductors, Hydrogen.


Abstract

Hydrogen is the future of the world but to use it certainly, needed raw hydrogen from the environment to process it or split it up from the water. Water is available in abundance on the earth; thus, water will serve as excellent raw material for hydrogen generation. Water splitting is not a spontaneous process as it requires much energy. Depending upon the energy sources used for this highly energy extensive reaction to happen, methods for water splitting are classified. It is observed that catalysts play a vital role in facilitating water splitting. Extensive research is going into this field to develop cost-friendly and stable catalysts. Nanostructured materials also help significantly to boost the hydrogen production from water. This review briefly analyses various approaches in developing the conventional water-splitting method.

Downloads

Download data is not yet available.

References

A. A. Topalov, S. Cherevko, A. R. Zeradjanin, et al., Chem. Sci. 2016, 5, 631.

Man Ho Han, Young-Jin Ko, Seung Yeon Lee, Chulwan Lim, Woong Hee Lee, Min Wook Pin, Jai Hyun Koh, Jihyun Kim, Woong Kim, Byoung Koun Min, Hyung-Suk Oh, J. Power Sources. 2022, 521, 230953.

Runjhun Dutta, Rohit Shrivastav, Manju Srivastava, Anuradha Verma, Sakshi Saxena, Neeraj Kumar Biswas, Vibha Rani Satsangi, Sahab Dass, Int. J. Hydrogen Energy. 2022, 47, 5192.

Shelly Singla, Surbhi Sharma, Soumen Basu, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Int. J. Hydrogen Energy. 2021, 46, 33696.

Jung Eun Lee, Ki-Joon Jeon, Pau Loke Show, Im Hack Lee, Sang-Chul Jung, Yong Jun Choi, Gwang Hoon Rhee, Kun- Yi Andrew Lin, Young-Kwon Park, Fuel. 2022, 308, 122048.

Nong Guangzai, Li Yijing, Yongjun Yin, Chem. Phys. Lett. 2019, 7375, 100033.

Shiqian Cao, Yanyu Liu, Tingting Bo, Ruixin Xu, Nan Mu, Wei Zhou, Appl. Surf. Sci. 2022, 578, 151989.

Wei Chena, Wu Lana, Huihui Wanga, Aiping Zhang, Chuanfu Liu, Electrochim. Acta. 2022, 404, 139578.

Jonathan H.A Nugent, Anne M Rich, Michael C. W Evans, Biochim. Biophys. Acta. 2001, 1503, 158.

B. S. Naidu, U. Gupta, U. Maitra, and C. N. R. Rao, Chem. Phys. Lett. 2014, 591, 277.

BOOK Sanjib Shyamal, Paramita Hajra, Harahari Mandal, Aparajita Bera, Debasis Sariket, Chinmoy Bhattacharya, Visible-Light-Active Photocatalysis. Wiley. 2018.

Alivisatos and co-workers, J. Phys. Chem. Lett. 2010, 1, 1051.

S. R. Lingampalli, Ujjal K. Gautam and C. N. R. Rao, Energy Environ. Sci. 2013, 6, 3589.

S. R. Lingampalli and C. N. R. Rao, Chem A. 2014, 2, 7702.

Urmimala Maitra, Uttam Gupta, Mrinmay De, Rajan Datta, A Govindaraj and C. N. R. Rao, Angew. Chem. Int. Ed. 2013, 52, 13057.

BOOK Jinlong Zhang, Baozhu Tian, Lingzhi Wang, Mingyang Xing, Juying Lei, Photocatalysis Fundamentals, Materials, and Applications. Springer Nature. 2018.

M. Chhetri, S. Maitra, H. Chakraborty, U. V. Waghmare, C. N. R. Rao, Energy Environ. Sci. 2016, 9, 95

Cheuh et. Al. Science. 2010, 330, 1797.

Mc Daniel et al. Energy Environ. Sci. 2013, 6, 2424.

Yang et. al. J. mater Chem A. 2014, 2, 3612. 21. Sunita Dey, B. S. Naidu, A. Govindaraj, and C. N. R. Rao, Phys. Chem. Chem. Phys. 2015, 17, 122.

Sunita Dey, S. Rajesh and C. N. R. Rao, J. Mater. Chem. A. 2016, 4, 16830.

Kang J, Dang V, Li H, Moon S, Li P, Kim Y, Kim C, Choi H, Liu Z, Lee H,Nano Converg. 2016, 3, 34.

Bo Sun, Tielin Shi, Zhengchun Peng, Wenjun Sheng, Ting Jiang and Guanglan Liao, Nanoscale Res Lett. 2013, 8, 462.

Shang Wang, Aolin Lu and Chuan-Jian Zhong, Nano Convergence. 2021, 8, 4.

Yue Wu and Lihua Bi, Catalysts. 2021, 11, 524.

Sara Abdel Razek, Melissa R Popeil, Linda Wangoh, Jatinkumar Rana, Nuwanthi Suwandaratne, Justin L Andrews, David F Watson, Sarbajit Banerjee, and Louis F J Piper, Electron. Struct. 2020, 2, 023001.

Mona A. Aziz Aljar, Muhammad Zulqarnain, Afzal Shah, Mohammad Salim Akhter, and Faiz Jan Iftikhar, AIP Advances. 2020, 10, 070701.

Siraj Siltan, Miran Ha, Dong Yeon Kim, Jitendra N. Tiwari, Chang Woo Myung, Abhishek Meena, Tae Joo Shin, Keun Hwa Chae and Kwang S. Kim, Nat Commun. 2019, 10, 5195.

Tachibana Y, Vayssieres L, Durrant JR, Nat Photonics. 2012, 6, 511.

Ferreirade Brito Juliana, Tavella Francesco, Genovese Chiara, Ampelli Claudio, Valnice Maria, Zanoni Boldrin, Centi Gabriele, Perathoner Siglinda, Appl Catal B Environ. 2018, 224, 136.

M. Moliner, J.E. Gabay, C.E. Kliewer, et al., J. Am. Chem. Soc. 2016, 138, 15743.

P. Munnik, P.E. de Jongh, K.P. de Jong, Chem. Rev. 2015, 115, 6687.

Y. He, S. Hwang, D.A. Cullen, et al., Energy Environ. Sci. 2019, 12, 250.

V. Campisciano, M. Gruttadauria, F. Giacalone, ChemCatChem. 2019, 11, 90.