Quest for superior insulins

Madhuvani Oak

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai.

Ameesha Dwivedi

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai

Darshan Kothari

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai.

Kartik Nimkar

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai.

DOI: https://doi.org/10.36664/bt/2022/v69i1/172487


Abstract

Chronic metabolic illnesses, like diabetes mellitus, have become diseases that harm human health and are now one of the most critical public health problems in almost half a century, as a result of societal development and lifestyle changes. For decades, conventional insulin therapy has been playing a significant role while treating millions of patients around the globe. Unfortunately, despite breakthroughs in DNA recombinant technology and pharmacotherapy, these therapeutic goals are rarely met, and results have not improved significantly. The low effectiveness rate of insulin treatment is becoming recognized as a result of intra-individual and inter-individual differences in insulin needs. Thus, our review focuses on finding superior insulin derivatives to treat diabetes more effectively and efficiently. Insulin analogs hold the potential to overcome the limitations of conventional insulin. We have taken a deep dive into rapid acting and long-acting analogs by discussing their pharmacokinetics, pharmacodynamics, dosage and therapeutic efficacy. But their safety profile has been questioned several times and therefore we have thrown some light on the current innovation trends that are being scrutinized.

Downloads

Download data is not yet available.

References

G. R. Kokil, R. N. Veedu, G. A. Ramm, J. B. Prins, and H. S. Parekh, “Type 2 Diabetes Mellitus: Limitations of Conventional Therapies and Intervention with Nucleic Acid-Based Therapeutics,” Chem. Rev., vol. 115, no. 11, pp. 4719–4743, 2015, doi: 10.1021/cr5002832.

A. T. Kharroubi, “Diabetes mellitus: The epidemic of the century,” World J. Diabetes, vol. 6, no. 6, p. 850, 2015, doi: 10.4239/wjd.v6.i6.850.

S. R. Joshi, R. M. Parikh, and A. K. Das, “Insulin--history, biochemistry, physiology and pharmacology.,” J. Assoc. Physicians India, vol. 55 Suppl, no. December 1921, pp. 19–25, 2007.

K. Poon and A. B. King, “Glargine and detemir: Safety and efficacy profiles of the long-acting basal insulin analogs,” Drug. Healthc. Patient Saf., vol. 2, no. 1, pp. 213–223, 2010, doi: 10.2147/DHPS.S7301.

“Analogue Insulin - Types of Analogue Insuli, Production & Cost.” https://www.diabetes.co.uk/insulin/analogue-i nsulin.html (accessed Jan. 29, 2022).

C. Steele et al., “Insulin Secretion in Type 1 Diabetes,” Diabetes, vol. 53, no. 2, pp. 426–433, 2004, doi: 10.2337/diabetes.53.2.426.

E. Leighton, C. A. Sainsbury, and G. C. Jones, “A Practical Review of C-Peptide Testing in Diabetes,” Diabetes Ther., vol. 8, no. 3, pp. 475–487, 2017, doi: 10.1007/s13300-017-0265-4.

“Types of Insulin - Consumer Med Safety.” https://consumermedsafety.org/insulin-safetycenter/ item/418 (accessed Jan. 29, 2022).

T. Kobori, S. Iwamoto, K. Takeyasu, and T. Ohtani, “Biopolymers Volume 85 / Number 4 295,” Biopolymers, vol. 85, no. 4, pp. 392–406, 2007, doi: 10.1002/bip.

H. Soran and N. Younis, “Insulin detemir: A new basal insulin analogue,” Diabetes, Obes. Metab., vol. 8, no. 1, pp. 26–30, 2006, doi: 10.1111/j.1463-1326.2005.00487.x.

S. Havelund et al., “The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin,” Pharm. Res., vol. 21, no. 8, pp. 1498–1504, 2004, doi: 10.1023/B:PHAM.0000036926.54824.37.

T. M. Chapman and C. M. Perry, “Insulin detemir: A review of its use in the management of type 1 and 2 diabetes mellitus,” Drugs, vol. 64, no. 22, pp. 2577–2595, 2004, doi: 10.2165/00003495-200464220-00008.

E. Gysling, “Insulin-glargin,” Pharma-Kritik, vol. 25, no. 9, pp. 33–35, 2003, doi: 10.37667/pk.2003.80.

P. S. Gillies, D. P. Figgitt, and H. M. Lamb, “Insulin glargine,” Drugs, vol. 59, no. 2, pp. 253–260, 2000, doi: 10.2165/00003495-200059020-00009.

K. McKeage and K. L. Goa, “Insulin glargine: a review of its therapeutic use as a long-acting agent for the management of type 1 and 2 diabetes mellitus,” Drugs, vol. 61, no. 11, pp. 1599–1624, 2001, doi: 10.2165/00003495-200161110-00007.

“LANTUS® (insulin glargine injection) for subcutaneous injection Prescribing Information.” https://products.sanofi.us/lantus/lantus.html (accessed Jan. 29, 2022).

I. Glargine, “Pharmacokinetics of 125 I-Labeled Insulin Glargine (HOE 901) in Healthy Men,” vol. 23, no. 6, pp. 813–819, 2000.

G. B. Bolli, R. D. Di Marchi, G. D. Park, S. Pramming, and V. A. Koivisto, “Insulin analogues and their potential in the management of diabetes mellitus,” Diabetologia, vol. 42, no. 10, pp. 1151–1167, 1999, doi: 10.1007/s001250051286.

P. Home, “Expert Opinion on Investigational Drugs Insulin glargine : the first clinically useful extended-acting insulin in half a century ?”

F. S. Malik and C. E. Taplin, “Insulin therapy in children and adolescents with type 1 diabetes,” Paediatr. Drugs, vol. 16, no. 2, pp. 141–150, Apr. 2014, doi: 10.1007/S40272-014-0064-6.

M. Lepore et al., “Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro,” Diabetes, vol. 49, no. 12, pp. 2142–2148, 2000, doi: 10.2337/diabetes.49.12.2142.

Eli Lilly and Company, “Humulin R package insert,” vol. 23, no. 8, pp. 1137–1142, 2015, Online. Available: http://pi.lilly.com/us/humulin-r-pi.pdf.

“in Intensive Insulin Therapy for Type 1,” vol. 23, no. 5, pp. 639–643, 2000.

L. Sciacca, R. Le Moli, and R. Vigneri, “Insulin analogs and cancer,” Front. Endocrinol. (Lausanne)., vol. 3, no. FEB, pp. 1–9, 2012, doi: 10.3389/fendo.2012.00021.

S. M. Setter, C. F. Corbett, R. K. Campbell, and J. R. White, “Insulin aspart: A new rapid-acting insulin analog,” Ann. Pharmacother., vol. 34, no. 12, pp. 1423–1431, 2000, doi: 10.1345/aph.19414.

H. Haahr, E. G. Fita, and T. Heise, “A Review of Insulin Degludec/Insulin Aspart: Pharmacokinetic and Pharmacodynamic Properties and Their Implications in Clinical Use,” Clin. Pharmacokinet., vol. 56, no. 4, pp. 339–354, 2017, doi: 10.1007/s40262-016-0455-7.

H. A. Shouhip, “Diabetes mellitus Diabetes mellitus,” Rev. Bras. Med., vol. 62, no. SPEC. ISS., pp. 60–71, 2005.

C. Mathieu, P. Gillard, and K. Benhalima, “Insulin analogues in type 1 diabetes mellitus: Getting better all the time,” Nat. Rev. Endocrinol., vol. 13, no. 7, pp. 385–399, 2017, doi: 10.1038/nrendo.2017.39.

K. P. Garnock-jones and G. L. Plosker, “Insulin Glulisine Diabetes Mellitus,” Insulin, vol. 69, no. 8, pp. 1035–1057, 2009.

S. K. Garg, S. L. Ellis, and H. Ulrich, “Insulin glulisine: A new rapid-acting insulin analogue for the treatment of diabetes,” Expert Opin. Pharmacother., vol. 6, no. 4, pp. 643–651, 2005, doi: 10.1517/14656566.6.4.643.

T. Santos Cavaiola and S. Edelman, “Inhaled insulin: A breath of fresh air? a review of inhaled insulin,” Clin. Ther., vol. 36, no. 8, pp. 1275–1289, 2014, doi: 10.1016/j.clinthera.2014.06.025.

E. Lefever, J. Vliebergh, and C. Mathieu, “Improving the treatment of patients with diabetes using insulin analogues: current findings and future directions,” Expert Opin. Drug Saf., vol. 20, no. 2, pp. 155–169, 2021, doi: 10.1080/14740338.2021.1856813.

A. N. Zaykov, J. P. Mayer, and R. D. Dimarchi, “Pursuit of a perfect insulin,” Nat. Rev. Drug Discov., vol. 15, no. 6, pp. 425–439, 2016, doi: 10.1038/nrd.2015.36.

R. Cheng, N. Taleb, M. Stainforth-Dubois, and R. Rabasa-Lhoret, “The promising future of insulin therapy in diabetes mellitus,” Am. J. Physiol. - Endocrinol. Metab., vol. 320, no. 5, pp. E886–E890, 2021, doi: 10.1152/AJPENDO.00608.2020.

Y. Wang, J. Shao, J. L. Zaro, and W. C. Shen, “Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production,” Diabetes, vol. 63, no. 5, pp. 1779–1788, 2014, doi: 10.2337/db13-0973.

D. J. Drucker, “Transforming type 1 diabetes: the next wave of innovation,” Diabetologia, vol. 64, no. 5, pp. 1059–1065, 2021, doi: 10.1007/s00125-021-05396-5.

M. A. Jarosinski, B. Dhayalan, N. Rege, D. Chatterjee, and M. A. Weiss, “‘Smart’ insulin-delivery technologies and intrinsic glucose-responsive insulin analogues,” Diabetologia, vol. 64, no. 5, pp. 1016–1029, 2021, doi: 10.1007/s00125-021-05422-6.

P. Fonte, F. Araújo, S. Reis, and B. Sarmento, “Oral insulin delivery: How far are we?,” J. Diabetes Sci. Technol., vol. 7, no. 2, pp. 520–531, 2013, doi: 10.1177/193229681300700228.

T. B. Kjeldsen et al., “Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans,” J. Med. Chem., vol. 64, no. 13, 2021, doi: 10.1021/acs.jmedchem.1c00257.

R. D. Dimarchi and J. P. Mayer, “Icodec Advances the Prospect of Once-Weekly Insulin Injection,” J. Med. Chem., vol. 64, no. 13, pp. 8939–8941, 2021, doi: 10.1021/acs.jmedchem.1c00983.

N. B. Phillips, J. Whittaker, F. Ismail-Beigi, and M. A. Weiss, “Insulin fibrillation and protein design: Topological resistance of single-chain analogs to thermal degradation with application to a pump reservoir,” J. Diabetes Sci. Technol., vol. 6, no. 2, pp. 277–288, 2012, doi: 10.1177/193229681200600210.

H. Hvid et al., “Treatment with insulin analog X10 and IGF-1 increases growth of colon cancer allografts,” PLoS One, vol. 8, no. 11, 2013, doi: 10.1371/journal.pone.0079710.

J. A. M. J. L. Janssen and A. J. Varewijck, “Insulin analogs and cancer: A note of caution,” Front. Endocrinol. (Lausanne)., vol. 5, no. MAY, pp. 1–8, 2014, doi: 10.3389/fendo.2014.00079.

O. Karlstad et al., “Use of Insulin and Insulin Analogs and Risk of Cancer — Systematic Review and Meta-Analysis of Observational Studies,” Curr. Drug Saf., vol. 8, no. 5, pp. 333–348, 2013, doi: 10.2174/15680266113136660067.

D. R. Owens, “Glargine and cancer: Can we now suggest closure?,” Diabetes Care, vol. 35, no. 12, pp. 2426–2428, 2012, doi: 10.2337/dc12-1968.

I. B. Hirsch, “Type 1 Diabetes Mellitus and the Use of Flexible Insulin Regimens,” Am. Fam. Physician, vol. 60, no. 8, p. 2343, Nov. 1999.

M. Pollak and D. Russell-Jones, “Insulin analogues and cancer risk: Cause for concern or cause célèbre?,” Int. J. Clin. Pract., vol. 64, no. 5, pp. 628–636, 2010, doi: 10.1111/j.1742-1241.2010.02354.x.

H. K. Bronsveld et al., “Treatment with insulin (analogues) and breast cancer risk in diabetics; a systematic review and meta-analysis of in vitro, animal and human evidence,” Breast Cancer Res., vol. 17, no. 1, 2015, doi: 10.1186/s13058-015-0611-2.