A Review on Polymer Nanocomposites: Synthesis, Properties, and Applications

Ayushmaan Tripathi

ICT-IOC Bhubaneswar, Odisha

DOI: https://doi.org/10.36664/bt/2022/v69i1/172483

Keywords: Nanofiller, Graphene, Sensor, Hydrogel, Carbon Nanotube 1. Introduction Nano Science.


Abstract

Polymer nanocomposite has been a rapidly expanding research topic for producing materials during the last few decades. Over the last two decades, there has been a significant scientific interest in nanoscience and nanotechnology. Nanomaterials' distinct features are related to quantum phenomena, greater surface area, and self-assembly. Quantum effects can begin to dominate matter's behaviour in the nanoscale, particularly at the lower end, affecting optical, electrical, and magnetic properties. Nanomaterials have evolved into nanocomposites with numerous applications. Its applications catapulted them to prominence in the field of material research. Because of their unique property combinations and design practicality, polymer nanocomposites are employed in sports equipment, wastewater treatment, the automobile industry, and biomedical applications. Even though they have numerous advantages, producing them in sufficient quantities and high quality is still one of the biggest challenges. During the last few decades, polymer nanocomposites have been a fast-developing research topic for material production. There has been a surge in scientific interest in nanoscience and nanotechnology during the last two decades. Nanomaterials have developed into nanocomposites, which have a wide range of uses. Its uses propelled them to the forefront of material research. Nanocomposites' physical, mechanical, barrier, flame retardancy, optical, dielectric, rheological, and thermal characteristics have been thoroughly researched. Their uses have also been discussed.

Downloads

Download data is not yet available.

References

(1) Pandey, P. P. Preparation and Characterization of Polymer Nanocomposites. Soft nanosci. lett. 2020, 10, 1–15. https://doi.org/10.4236/snl.2020.101001.

(2) Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in Hybrid Polymer/Nanocarbon Composites. A Review. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. https://doi.org/10.1016/j.compositesa.2015.02.021.

Gao, F. The Future Prospect of Polymer Nanocomposites in Reinforcement Application, E-Polymer 2002, 4, 1-7.

Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. https://doi.org/10.3762/bjnano.9.98.

(5) Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

Shukla, P.; Saxena, P. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. Chin. J. Polym. Sci 2021, 39, 665–691. https://doi.org/10.1007/s10118-021-2553-8.

Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer (Guildf.) 2011, 52, 5–25. https://doi.org/10.1016/j.polymer.2010.11.042.

(8) Jaffar Al-Mulla, E. A. Preparation of New Polymer Nanocomposites Based on Poly(Lactic Acid)/Fatty Nitrogen Compounds Modified Clay by a Solution Casting Process. Fiber. Polym. 2011, 12, 444–450. https://doi.org/10.1007/s12221-011-0444-2.

(9) Vyas, M. K.; Chandra, A. Role of Organic/Inorganic Salts and Nanofillers in Polymer Nanocomposites: Enhanced Conduction, Rheological, and Thermal Properties. J. Mater. Sci. 2018, 53, 4987–5003. https://doi.org/10.1007/s10853-017-1912-x.

(10) Abulyazied, D. E.; Ene, A. An Investigative Study on the Progress of Nanoclay-Reinforced Polymers: Preparation, Properties, and Applications: A Review. Polymers (Basel) 2021, 13, 4401. https://doi.org/10.3390/polym13244401.

(11) Pavlidou, S.; Papaspyrides, C. D. A Review on Polymer–Layered Silicate Nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

(12) Tajik, S.; Beitollahi, H.; Nejad, F. G.; Dourandish, Z.; Khalilzadeh, M. A.; Jang, H. W.; Venditti, R. A.; Varma, R. S.; Shokouhimehr, M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind. Eng. Chem. Res. 2021, 60, 1112–1136. https://doi.org/10.1021/acs.iecr.0c04952.

(13) Mao, H.-N.; Wang, X.-G. Use of In-Situ Polymerization in the Preparation of Graphene / Polymer Nanocomposites. New Carbon Mater. 2020, 35, 336–343. https://doi.org/10.1016/s1872-5805(20)60493-0.

(14) Lee, J. K. Y.; Chen, N.; Peng, S.; Li, L.; Tian, L.; Thakor, N.; Ramakrishna, S. Polymer-Based Composites by Electrospinning: Preparation & Functionalization with Nanocarbons. Prog. Polym. Sci. 2018, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002 . 15) Kord, B. Nanofiller Reinforcement Effects on the Thermal, Dynamic Mechanical, and Morphological Behavior of HDPE/Rice Husk Flour

Composites. BioRes 2011, 6, 1351–1358. 16) Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S.-J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. https://doi.org/10.1016/j.jiec.2014.03.022.

Tjong, S. C. Structural and Mechanical Properties of Polymer Nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. https://doi.org/10.1016/j.mser.2006.06.001.

Drozdov, A. D.; Christiansen, J. de C. Micromechanical Modeling of Barrier Properties of Polymer Nanocomposites. Compos. Sci. Technol. 2020, 189. https://doi.org/10.1016/j.compscitech.2020.108002.

Madyaratri, E. W.; Ridho, M. R.; Aristri, M. A.; Lubis, M. A. R.; Iswanto, A. H.; Nawawi, D. S.; Antov, P.; Kristak, L.; Majlingová, A.; Fatriasari, W. Recent Advances in the Development of Fire-Resistant Biocomposites-A Review. Polymers (Basel) 2022, 14, 362. https://doi.org/10.3390/polym14030362.

He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame Retardant Polymeric Nanocomposites through the Combination of Nanomaterials and Conventional Flame Retardants. Prog. Mater. Sci. 2020, 114. https://doi.org/10.1016/j.pmatsci.2020.100687.

Srivastava, S.; Haridas, M.; Basu, J. K. Optical Properties of Polymer Nanocomposites. Bull. Mater. Sci. (India) 2008, 31, 213–217. https://doi.org/10.1007/s12034-008-0038-9.

Kumbhakar, P.; Ray, S. S.; Stepanov, A. L. Optical Properties of Nanoparticles and Nanocomposites. J Nanomater. 2014. https://doi.org/10.1155/2014/181365.

Guseva, E. N.; Pikhurov, D. V.; Zuev, V. V. Dielectric Properties of Polyurethane Nanocomposites Modified by Fullerene С60 and Nanodiamonds. Sci. tech. j. inf. technol. mech. opt. 2018, 982–989. https://doi.org/10.17586/2226-1494-2018-18-6-982 -989.

(24) Khaliq, J.; Deutz, D. B.; Frescas, J. A. C.; Vollenberg, P.; Hoeks, T.; van der Zwaag, S.; Groen, P. Effect of the Piezoelectric Ceramic Filler Dielectric Constant on the Piezoelectric Properties of PZT-Epoxy Composites. Ceram. Int. 2017, 43, 2774–2779. https://doi.org/10.1016/j.ceramint.2016.11.108.

(25) Chen, H.; Ding, Y.; Tan, C. Rheological Behaviour of Nanofluids. New J. Phys. 2007, 9, 367–367. https://doi.org/10.1088/1367-2630/9/10/367.

(26) Abraham, J.; Sharika, T.; Mishra, R. K.; Thomas, S. Rheological Characteristics of Nanomaterials and Nanocomposites. In Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends; Elsevier Inc., 2017; pp 327–350. https://doi.org/10.1016/B978-0-08-101991-7.00014 -5.

(27) Dallas, P.; Georgakilas, V.; Niarchos, D.; Komninou, P.; Kehagias, T.; Petridis, D. Synthesis, Characterization and Thermal Properties of Polymer/Magnetite Nanocomposites. Nanotechnology 2006, 17, 2046–2053. https://doi.org/10.1088/0957-4484/17/8/043.

(28) Jineesh, A. G.; Mohapatra, S. Thermal Properties of Polymer–Carbon Nanocomposites. In Springer Series on Polymer and Composite Materials; Springer Singapore: Singapore, 2019; pp 235–270.

(29) Lawal, A. T. Recent Progress in Graphene Based Polymer Nanocomposites. Cogent Chem. 2020, 6, 1833476. https://doi.org/10.1080/23312009.2020.1833476.

El Rhazi, M.; Majid, S.; Elbasri, M.; Salih, F. E.; Oularbi, L.; Lafdi, K. Recent Progress in Nanocomposites Based on Conducting Polymer: Application as Electrochemical Sensors. Int. Nano Lett. 2018, 8, 79–99. https://doi.org/10.1007/s40089-018-0238-2.

Kenry; Lim, C. T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002 . 32) Chaudhary, P.; Fatima, F.; Kumar, A. Relevance of Nanomaterials in Food Packaging and Its Advanced Future Prospects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5180–5192. https://doi.org/10.1007/s10904-020-01674-8.

Shankar, S.; Rhim, J.-W. Polymer Nanocomposites for Food Packaging Applications. In Functional and Physical Properties of Polymer Nanocomposites; John Wiley & Sons, Ltd: Chichester, UK, 2016; pp 29–55.

Basavegowda, N.; Baek, K.-H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021, 13, 4198. https://doi.org/10.3390/polym13234198.

Mtibe, A.; Motloung, M. P.; Bandyopadhyay, J.; Ray, S. S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—an Overview. Macromol. Rapid Commun. 2021, 42, 2100130. https://doi.org/10.1002/marc.202100130.

Khanna, V. K. Nanosensors : Physical, Chemical, and Biological; Taylor & Francis, 2011.

Pandey, S. Highly Sensitive and Selective Chemiresistor Gas/Vapor Sensors Based on Polyaniline Nanocomposite: A Comprehensive Review. J. Sci. Adv. Mater. Devices 2016, 1, 431–453. https://doi.org/10.1016/j.jsamd.2016.10.005.

(38) Norizan, M. N.; Moklis, M. H.; Ngah Demon, S. Z.; Halim, N. A.; Samsuri, A.; Mohamad, I. S.; Knight, V. F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv. 2020, 10, 43704–43732. https://doi.org/10.1039/d0ra09438b.

Silva, M.; Ferreira, F. N.; Alves, N. M.; Paiva, M. C. Biodegradable Polymer Nanocomposites for Ligament/Tendon Tissue Engineering. J. Nanobiotechnology 2020, 18. https://doi.org/10.1186/s12951-019-0556-1.

Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004.

(41) Bhat, A.; Budholiya, S.; Raj, S. A.; Sultan, M. T. H.; Hui, D.; Shah, A. U. M.; Safri, S. N. A. Review on Nanocomposites Based on Aerospace Applications. Nanotechnol. Rev. 2021, 10, 237–253. https://doi.org/10.1515/ntrev-2021-0018.

(42) Tohidian, M.; Ghaffarian, S. R.; Nouri, M.; Jaafarnia, E.; Haghighi, A. H. Polyelectrolyte Nanocomposite Membranes Using Imidazole-Functionalized Nanosilica for Fuel Cell Applications. J. Macromol. Sci. Phys. 2015, 54, 17–31. https://doi.org/10.1080/00222348.2014.982485.

(43) Wang, Y.; Tebyetekerwa, M.; Liu, Y.; Wang, M.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Extremely Stretchable and Healable Ionic Conductive Hydrogels Fabricated by Surface Competitive Coordination for Human-Motion Detection. Chem. Eng. J. 2021, 420. https://doi.org/10.1016/j.cej.2020.127637.