Insulin Analogs for Type 1 Diabetes Management

Aishwarya Girish Nayak

Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019

DOI: https://doi.org/10.36664/bt/2022/v69i1/172481

Keywords: diabetes, insulin, genetic engineering.


Abstract

Type 1 diabetes is a metabolic dysfunction in which there is the autoimmune destruction of the β cells in the islet of Langerhans; thereby, there is very little or no insulin production.1 Insulin regulates the blood glucose level in the body, and there is no known way of preventing type 1 diabetes.35 Blood glucose homeostasis is vital to avoid further complications, and hence they need insulin analogs to mimic the same. Regular insulin has limitations on how it mimics the bolus insulin secretion. By changing the amino acid sequence in the DNA through genetic engineering, insulin analogs can have different characteristics from natural insulin, which helps overcome these shortcomings. Rapid-acting, long-acting, and mixed formulations are subcategories of insulin analogs. These can help mimic the pattern of insulin release in a healthy individual. Intravenous and subcutaneous administrations influence how fast the insulin analogs can act. The success of each analog depends on how close its action is to natural insulin. All-analog basal bonus regimens show lower glycosylated hemoglobin than all-human insulin basal bonus regimens. Generally, analogs do not have adverse side effects. Therefore, analogs have a significant role in preventing type 1 diabetes from developing into a potentially fatal disease.9 This article even projects the prospects of insulin analogs like inhalers and oral administrations.

Downloads

Download data is not yet available.

References

(1) Kawasaki, E. Type 1 Diabetes and Autoimmunity. Clin. Pediatr. Endocrinol. 2014, 23 (4), 99–105. https://doi.org/10.1297/cpe.23.99.

(2) Baeshen, N. A.; Baeshen, M. N.; Sheikh, A.; Bora, R. S.; Ahmed, M. M. M.; Ramadan, H. A. I.; Saini, K. S.; Redwan, E. M. Cell Factories for Insulin Production. Microb. Cell Fact. 2014, 13 (1), 141. https://doi.org/10.1186/s12934-014-0141-0.

(3) Eizirik, D. L.; Pasquali, L.; Cnop, M. Pancreatic β-Cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure. Nat. Rev. Endocrinol. 2020, 16 (7), 349–362. https://doi.org/10.1038/s41574-020-0355-7.

(4) Liu, M.; Weiss, M. A.; Arunagiri, A.; Yong, J.; Rege, N.; Sun, J.; Haataja, L.; Kaufman, R. J.; Arvan, P. Biosynthesis, Structure, and Folding of the Insulin Precursor Protein. Diabetes Obes. Metab. 2018, 20 Suppl 2 (Suppl 2), 28–50. https://doi.org/10.1111/dom.13378.

(5) Vasiljević, J.; Torkko, J. M.; Knoch, K.-P.; Solimena, M. The Making of Insulin in Health and Disease. Diabetologia 2020, 63 (10), 1981–1989. https://doi.org/10.1007/s00125-020-05192-7.

(6) UpToDate https://www.uptodate.com/contents/pancreatic-betacell- function/print

(7) Schmidt, K. D.; Valeri, C.; Leslie, R. D. G. Autoantibodies in Type 1 Diabetes. Clin. Chim. Acta 2005, 354 (1–2), 35–40. https://doi.org/10.1016/j.cccn.2004.11.017.

(8) Kawasaki, E. Type 1 Diabetes and Autoimmunity. Clin. Pediatr. Endocrinol. 2014, 23 (4), 99–105. https://doi.org/10.1297/cpe.23.99.

(9) Diabetes Complications. Diabetes Mellitus 2008.

(10) Rubin, R.; Khanna, N. R.; McIver, L. A. Aspart Insulin; StatPearls Publishing, 2021.

(11) PubChem. Insulin aspart https://pubchem.ncbi.nlm.nih.gov/compound/Insulin -aspart

(12) https://www.drugs.com/mtm/insulin-aspart.html

(13) Insulin Aspart (rDNA Origin) Injection https://medlineplus.gov/druginfo/meds/a605013.htm l

(14)https://www.researchgate.net/figure/Amino-a cid-sequence-changes-used-in-the-rapid-acti ng-insulin-analogues-a-insulin_fig3_283522 142

(15) PubChem. Insulin lispro https://pubchem.ncbi.nlm.nih.gov/compound/In sulin-lispro

(16) PubChem. Insulin glulisine https://pubchem.ncbi.nlm.nih.gov/compound/In sulin-glulisine

(17) Insulin Glulisine: Hypoglycaemia, Treated with Intranasal Glucagon: Case Report. React. Wkly. 2013, 1455 (1), 21–21. https://doi.org/10.1007/s40278-013-3641 -5.

(18) Munguia, C.; Correa, R. Regular Insulin; StatPearls Publishing, 2021.

(19) PubChem. Insulin detemir https://pubchem.ncbi.nlm.nih.gov/compound/In sulin-detemir (accessed 2022 -02 -02).

(20) Insulin human inhalation https://medlineplus.gov/druginfo/meds/a61501 4.html (accessed 2022 -02 -05).

(21) Allen, D.; Ruan, C.-H.; King, B.; Ruan, K.-H. Recent Advances and near Future of Insulin Production and Therapy. FutureMed.Chem. 2019, 11 (13),1513– 1517. https://doi.org/10.4155/fmc-2019-0134.

(22) Arnolds, S.; Heise, T. Inhaled Insulin. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21 (4), 555–571. https://doi.org/10.1016/j.beem.2007.07.004.

(23) Wonderly, K. Oral insulin for diabetes: A future option? https://www.healthline.com/health/type- 2-diabetes/oral-insulin

(24) Gabr, M. M.; Zakaria, M. M.; Refaie, A. F.; Khater, S. M.; Ashamallah, S. A.; Ismail, A. M.; El-Badri, N.; Ghoneim, M. A. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols. Biomed Res.

Boháčová, P.; Holáň, V. Mesenchymal Stem Cells and Type 1 Diabetes Treatment. Vnitr. Lek. 2018, 64 (7–8), 725–728.

(26) Cunningham, A. M.; Freeman, A. M. Glargine Insulin; StatPearls Publishing, 2021.

(27) Younis, N.; Soran, H.; Bowen-Jones, D. Insulin Glargine: A New Basal Insulin Analogue. QJM 2002, 95 (11), 757–761. https://doi.org/10.1093/qjmed/95.11.757.

(28) Insuline glargine. Med.-farm. meded. 2003, 41 (2), 65–65. https://doi.org/10.1007/bf03058114.

(29) PubChem. Insulin degludec https://pubchem.ncbi.nlm.nih.gov/compound/In sulin-degludec

(30) Tambascia, M. A.; Eliaschewitz, F. G. Degludec: The New Ultra-Long Insulin Analogue. Diabetol. Metab. Syndr. 2015, 7 (1), 57. https://doi.org/10.1186/s13098-015-0037 -0.

(31) Kumar, V.; Choudhry, I.; Namdev, A.; Mishra, S.; Soni, S.; Hurkat, P.; Jain, A.; Jain, D. Oral Insulin: Myth or Reality. Curr. Diabetes Rev. 2018, 14 (6), 497–508. https://doi.org/10.2174/15733998136661 70621122742.

(32) Smart insulin https://jdrf.org.uk/our-research/about-our-resear ch/treat/smart-insulin/Int. 2014, 2014, 832736. https://doi.org/10.1155/2014/832736.

(33) Sullivan, S. Basal insulin: Types, benefits, dosage, and side effects https://www.healthline.com/health/type-2-diabe tes/basal-insulin-types-benefits-dosage-side-eff ects

(34) PubChem. Insulin human https://pubchem.ncbi.nlm.nih.gov/compound/In sulin-human

(35) Insulin https://diatribe.org/insulin

(36) Insulin Detemir: Allergy: Case Report. React. Wkly. 2013, 1482 (1), 25–25. https://doi.org/10.1007/s40278-013-7761 -8.

(37) Morello, C. M. Pharmacokinetics and Pharmacodynamics of Insulin Analogs in Special Populations with Type 2 Diabetes Mellitus. Int. J. Gen. Med. 2011, 4, 827–835. https://doi.org/10.2147/IJGM.S26889.

(38) PubChem. Lente https://pubchem.ncbi.nlm.nih.gov/compound/L ente

(39) What are the routes of administration for insulin? https://www.futurelearn.com/info/course s/understanding-insulin/0/steps/22476

(40) Pietrangelo, A. Diabetes and insulin-like growth factor (IGF): Is there a link? https://www.healthline.com/health/igf-di abetes

(41) Levemir https://www.rxlist.com/levemir-drug.htm

(42) Types of insulin diabetes/medications-and-therapies/type- 2-insulin-rx/types-of-insulin/

Mokta, J. K.; Mokta, K. K.; Panda, P. Insulin Lipodystrophy and Lipohypertrophy. Indian J. Endocrinol. Metab. 2013, 17 (4), 773–774. https://doi.org/10.4103/2230-8210.113788

Similar Articles

You may also start an advanced similarity search for this article.