Non-Thermal Microbial Decontamination of Onion and Dehydrated Onion Products

Srinivasan Savitha

Chemical Engineering Department, Institute of Chemical Technology, ICT Mumbai – IOC Odisha Campus; Bhubaneshwar – 751013

DOI: https://doi.org/10.36664/bt/2021/v68i1/165756

Keywords: Microbial Decontamination, Onions, Prevent Wastage, Food-Borne Illnesses, Phytochemicals.


Abstract

Onions are a major component of recipes from all-over the world. Apart from fresh onions, dehydrated onions in forms of powder, flakes and shreds are available in the market. These are used as seasonings, flavors or as condiments. Dehydrated flakes and shreds are also reconstituted and used. Dehydration is mainly done for increasing the shelf-life of the product, as well as to reduce the water weight for ease of transportation. Reduction in water activity during dehydration helps inhibit microbial growth. Nevertheless, bacterial and fungal contamination has been reported. These contaminations cause various food-borne illnesses and health hazards. Targeting spoilage and pathogenic microorganisms would not only help prevent wastage and food-borne illnesses, respectively, but also improve the quality standards as per regulations. The use of non-thermal technologies has a great potential not only in decontamination but also in the preservation of phytochemicals and volatile compounds present in onions.

Downloads

Download data is not yet available.

Author Biography

Srinivasan Savitha, Chemical Engineering Department, Institute of Chemical Technology, ICT Mumbai – IOC Odisha Campus; Bhubaneshwar – 751013

Department of Chemical Engineering

References

WEBSITE: http://apeda.in/agriexchange/Market Profile/one/ONION.aspx, Accessed: Jan 13, 2021.

BOOK: D. S. Jayas, Reference Module in Food Science, Elsevier, 2016.

J. P. P. M. Smelt, S. Brul, Crit. Rev. Food Sci. Nutr., 2014, 54, 1371.

D. Mercer, Food. Chem. Toxicol. 2014, 119, 281.

M. S. Rahman, Handbook of Food Preservation (2nd ed), CRC Press, 2007, 287.

K. Clayton, D. Bush, K. Keener, Purdue Ext. - Food Entrep. Ser., 2012, No. FS-15-W.

R. B. Haines, E. M. L. Elliot, J. Hyg. (Lond)., 1944, 43, 370.

A. Nile, S. H. Nile, D. H. Kim, Y. S. Keum, P. G Seok, K. Sharma, Food Chem. Toxicol., 2018, 119, 281.

S. Bourdoux, D. Li,; A. Rajkovic, F.Devlieghere, M. Uyttendaele, Compr. Rev. Food Sci. Food Saf., 2016, 15, 1056.

V. Rodov, Z. Tietel, Y. Vinokur, B. Horev, D. Eshel, J. Agric. Food Chem., 2010, 58, 9071.

J. B. Orpin, Z. Yusuf, I. Mzungu, C. A. Orpin, MOJ Biol. Med., 2017, 2, 280.

E. H. Chang, Y. S. Bae, I. S. Shin, H. J. Choi, J. H. Lee, J. W. Choi, J. Food Qual., 2018, 3481806.

S. N. Yurgel, L. Abbey, N. Loomer, R. Gillis-Madden, M. Mammoliti, Phytobiomes J., 2018, 2, 35.

E. J. Rifna,; S. K. Singh,; S. Chakraborty, M. Dwivedi, Food Res. Int., 2019, 126, 108654.

M. O. Aguilera, P. V. Stagnitta, B. Micalizzi, A. M. Stefanini De Guzmán, Anaerobe, 2005, 11, 327.

A. Pezzutti, J. Food Process. Preserv., 2005, 38, 797.

CONFERENCE: S. Vijaya, J. H. Lakshmana, National Conference on Empowering Mankind with Micrrobial Technoologies (AMI-EMMT), 2014.

C. Hertwig, N. Meneses, A. Mathys, Trends Food Sci. Technol., 2018, 77, 131.

J. E. Kim, Y. J. Oh, M. Y. Won, K. L. Lee, S. C. Min, Food Microbiol., 2017,62, 112.

S. D. Pillai, S. Shayanfar, Radiat. Phys. Chem., 2017, 143, 85.

U. Gryczka, W. Migda, S. Bułka, Radiat. Phys. Chem., 2018, 143, 59.

P. Setlow, L. Li, Photochem. Photobiol., 2015, 91, 1263.